123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791 |
- # -*- coding: utf-8 -*-
- #
- # Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # https://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """RSA key generation code.
- Create new keys with the newkeys() function. It will give you a PublicKey and a
- PrivateKey object.
- Loading and saving keys requires the pyasn1 module. This module is imported as
- late as possible, such that other functionality will remain working in absence
- of pyasn1.
- .. note::
- Storing public and private keys via the `pickle` module is possible.
- However, it is insecure to load a key from an untrusted source.
- The pickle module is not secure against erroneous or maliciously
- constructed data. Never unpickle data received from an untrusted
- or unauthenticated source.
- """
- import logging
- import warnings
- from rsa._compat import range
- import rsa.prime
- import rsa.pem
- import rsa.common
- import rsa.randnum
- import rsa.core
- log = logging.getLogger(__name__)
- DEFAULT_EXPONENT = 65537
- class AbstractKey(object):
- """Abstract superclass for private and public keys."""
- __slots__ = ('n', 'e')
- def __init__(self, n, e):
- self.n = n
- self.e = e
- @classmethod
- def _load_pkcs1_pem(cls, keyfile):
- """Loads a key in PKCS#1 PEM format, implement in a subclass.
- :param keyfile: contents of a PEM-encoded file that contains
- the public key.
- :type keyfile: bytes
- :return: the loaded key
- :rtype: AbstractKey
- """
- @classmethod
- def _load_pkcs1_der(cls, keyfile):
- """Loads a key in PKCS#1 PEM format, implement in a subclass.
- :param keyfile: contents of a DER-encoded file that contains
- the public key.
- :type keyfile: bytes
- :return: the loaded key
- :rtype: AbstractKey
- """
- def _save_pkcs1_pem(self):
- """Saves the key in PKCS#1 PEM format, implement in a subclass.
- :returns: the PEM-encoded key.
- :rtype: bytes
- """
- def _save_pkcs1_der(self):
- """Saves the key in PKCS#1 DER format, implement in a subclass.
- :returns: the DER-encoded key.
- :rtype: bytes
- """
- @classmethod
- def load_pkcs1(cls, keyfile, format='PEM'):
- """Loads a key in PKCS#1 DER or PEM format.
- :param keyfile: contents of a DER- or PEM-encoded file that contains
- the key.
- :type keyfile: bytes
- :param format: the format of the file to load; 'PEM' or 'DER'
- :type format: str
- :return: the loaded key
- :rtype: AbstractKey
- """
- methods = {
- 'PEM': cls._load_pkcs1_pem,
- 'DER': cls._load_pkcs1_der,
- }
- method = cls._assert_format_exists(format, methods)
- return method(keyfile)
- @staticmethod
- def _assert_format_exists(file_format, methods):
- """Checks whether the given file format exists in 'methods'.
- """
- try:
- return methods[file_format]
- except KeyError:
- formats = ', '.join(sorted(methods.keys()))
- raise ValueError('Unsupported format: %r, try one of %s' % (file_format,
- formats))
- def save_pkcs1(self, format='PEM'):
- """Saves the key in PKCS#1 DER or PEM format.
- :param format: the format to save; 'PEM' or 'DER'
- :type format: str
- :returns: the DER- or PEM-encoded key.
- :rtype: bytes
- """
- methods = {
- 'PEM': self._save_pkcs1_pem,
- 'DER': self._save_pkcs1_der,
- }
- method = self._assert_format_exists(format, methods)
- return method()
- def blind(self, message, r):
- """Performs blinding on the message using random number 'r'.
- :param message: the message, as integer, to blind.
- :type message: int
- :param r: the random number to blind with.
- :type r: int
- :return: the blinded message.
- :rtype: int
- The blinding is such that message = unblind(decrypt(blind(encrypt(message))).
- See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29
- """
- return (message * pow(r, self.e, self.n)) % self.n
- def unblind(self, blinded, r):
- """Performs blinding on the message using random number 'r'.
- :param blinded: the blinded message, as integer, to unblind.
- :param r: the random number to unblind with.
- :return: the original message.
- The blinding is such that message = unblind(decrypt(blind(encrypt(message))).
- See https://en.wikipedia.org/wiki/Blinding_%28cryptography%29
- """
- return (rsa.common.inverse(r, self.n) * blinded) % self.n
- class PublicKey(AbstractKey):
- """Represents a public RSA key.
- This key is also known as the 'encryption key'. It contains the 'n' and 'e'
- values.
- Supports attributes as well as dictionary-like access. Attribute access is
- faster, though.
- >>> PublicKey(5, 3)
- PublicKey(5, 3)
- >>> key = PublicKey(5, 3)
- >>> key.n
- 5
- >>> key['n']
- 5
- >>> key.e
- 3
- >>> key['e']
- 3
- """
- __slots__ = ('n', 'e')
- def __getitem__(self, key):
- return getattr(self, key)
- def __repr__(self):
- return 'PublicKey(%i, %i)' % (self.n, self.e)
- def __getstate__(self):
- """Returns the key as tuple for pickling."""
- return self.n, self.e
- def __setstate__(self, state):
- """Sets the key from tuple."""
- self.n, self.e = state
- def __eq__(self, other):
- if other is None:
- return False
- if not isinstance(other, PublicKey):
- return False
- return self.n == other.n and self.e == other.e
- def __ne__(self, other):
- return not (self == other)
- def __hash__(self):
- return hash((self.n, self.e))
- @classmethod
- def _load_pkcs1_der(cls, keyfile):
- """Loads a key in PKCS#1 DER format.
- :param keyfile: contents of a DER-encoded file that contains the public
- key.
- :return: a PublicKey object
- First let's construct a DER encoded key:
- >>> import base64
- >>> b64der = 'MAwCBQCNGmYtAgMBAAE='
- >>> der = base64.standard_b64decode(b64der)
- This loads the file:
- >>> PublicKey._load_pkcs1_der(der)
- PublicKey(2367317549, 65537)
- """
- from pyasn1.codec.der import decoder
- from rsa.asn1 import AsnPubKey
- (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey())
- return cls(n=int(priv['modulus']), e=int(priv['publicExponent']))
- def _save_pkcs1_der(self):
- """Saves the public key in PKCS#1 DER format.
- :returns: the DER-encoded public key.
- :rtype: bytes
- """
- from pyasn1.codec.der import encoder
- from rsa.asn1 import AsnPubKey
- # Create the ASN object
- asn_key = AsnPubKey()
- asn_key.setComponentByName('modulus', self.n)
- asn_key.setComponentByName('publicExponent', self.e)
- return encoder.encode(asn_key)
- @classmethod
- def _load_pkcs1_pem(cls, keyfile):
- """Loads a PKCS#1 PEM-encoded public key file.
- The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and
- after the "-----END RSA PUBLIC KEY-----" lines is ignored.
- :param keyfile: contents of a PEM-encoded file that contains the public
- key.
- :return: a PublicKey object
- """
- der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY')
- return cls._load_pkcs1_der(der)
- def _save_pkcs1_pem(self):
- """Saves a PKCS#1 PEM-encoded public key file.
- :return: contents of a PEM-encoded file that contains the public key.
- :rtype: bytes
- """
- der = self._save_pkcs1_der()
- return rsa.pem.save_pem(der, 'RSA PUBLIC KEY')
- @classmethod
- def load_pkcs1_openssl_pem(cls, keyfile):
- """Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL.
- These files can be recognised in that they start with BEGIN PUBLIC KEY
- rather than BEGIN RSA PUBLIC KEY.
- The contents of the file before the "-----BEGIN PUBLIC KEY-----" and
- after the "-----END PUBLIC KEY-----" lines is ignored.
- :param keyfile: contents of a PEM-encoded file that contains the public
- key, from OpenSSL.
- :type keyfile: bytes
- :return: a PublicKey object
- """
- der = rsa.pem.load_pem(keyfile, 'PUBLIC KEY')
- return cls.load_pkcs1_openssl_der(der)
- @classmethod
- def load_pkcs1_openssl_der(cls, keyfile):
- """Loads a PKCS#1 DER-encoded public key file from OpenSSL.
- :param keyfile: contents of a DER-encoded file that contains the public
- key, from OpenSSL.
- :return: a PublicKey object
- :rtype: bytes
- """
- from rsa.asn1 import OpenSSLPubKey
- from pyasn1.codec.der import decoder
- from pyasn1.type import univ
- (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey())
- if keyinfo['header']['oid'] != univ.ObjectIdentifier('1.2.840.113549.1.1.1'):
- raise TypeError("This is not a DER-encoded OpenSSL-compatible public key")
- return cls._load_pkcs1_der(keyinfo['key'][1:])
- class PrivateKey(AbstractKey):
- """Represents a private RSA key.
- This key is also known as the 'decryption key'. It contains the 'n', 'e',
- 'd', 'p', 'q' and other values.
- Supports attributes as well as dictionary-like access. Attribute access is
- faster, though.
- >>> PrivateKey(3247, 65537, 833, 191, 17)
- PrivateKey(3247, 65537, 833, 191, 17)
- exp1, exp2 and coef will be calculated:
- >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
- >>> pk.exp1
- 55063
- >>> pk.exp2
- 10095
- >>> pk.coef
- 50797
- """
- __slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef')
- def __init__(self, n, e, d, p, q):
- AbstractKey.__init__(self, n, e)
- self.d = d
- self.p = p
- self.q = q
- # Calculate exponents and coefficient.
- self.exp1 = int(d % (p - 1))
- self.exp2 = int(d % (q - 1))
- self.coef = rsa.common.inverse(q, p)
- def __getitem__(self, key):
- return getattr(self, key)
- def __repr__(self):
- return 'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self
- def __getstate__(self):
- """Returns the key as tuple for pickling."""
- return self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef
- def __setstate__(self, state):
- """Sets the key from tuple."""
- self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef = state
- def __eq__(self, other):
- if other is None:
- return False
- if not isinstance(other, PrivateKey):
- return False
- return (self.n == other.n and
- self.e == other.e and
- self.d == other.d and
- self.p == other.p and
- self.q == other.q and
- self.exp1 == other.exp1 and
- self.exp2 == other.exp2 and
- self.coef == other.coef)
- def __ne__(self, other):
- return not (self == other)
- def __hash__(self):
- return hash((self.n, self.e, self.d, self.p, self.q, self.exp1, self.exp2, self.coef))
- def blinded_decrypt(self, encrypted):
- """Decrypts the message using blinding to prevent side-channel attacks.
- :param encrypted: the encrypted message
- :type encrypted: int
- :returns: the decrypted message
- :rtype: int
- """
- blind_r = rsa.randnum.randint(self.n - 1)
- blinded = self.blind(encrypted, blind_r) # blind before decrypting
- decrypted = rsa.core.decrypt_int(blinded, self.d, self.n)
- return self.unblind(decrypted, blind_r)
- def blinded_encrypt(self, message):
- """Encrypts the message using blinding to prevent side-channel attacks.
- :param message: the message to encrypt
- :type message: int
- :returns: the encrypted message
- :rtype: int
- """
- blind_r = rsa.randnum.randint(self.n - 1)
- blinded = self.blind(message, blind_r) # blind before encrypting
- encrypted = rsa.core.encrypt_int(blinded, self.d, self.n)
- return self.unblind(encrypted, blind_r)
- @classmethod
- def _load_pkcs1_der(cls, keyfile):
- """Loads a key in PKCS#1 DER format.
- :param keyfile: contents of a DER-encoded file that contains the private
- key.
- :type keyfile: bytes
- :return: a PrivateKey object
- First let's construct a DER encoded key:
- >>> import base64
- >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt'
- >>> der = base64.standard_b64decode(b64der)
- This loads the file:
- >>> PrivateKey._load_pkcs1_der(der)
- PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
- """
- from pyasn1.codec.der import decoder
- (priv, _) = decoder.decode(keyfile)
- # ASN.1 contents of DER encoded private key:
- #
- # RSAPrivateKey ::= SEQUENCE {
- # version Version,
- # modulus INTEGER, -- n
- # publicExponent INTEGER, -- e
- # privateExponent INTEGER, -- d
- # prime1 INTEGER, -- p
- # prime2 INTEGER, -- q
- # exponent1 INTEGER, -- d mod (p-1)
- # exponent2 INTEGER, -- d mod (q-1)
- # coefficient INTEGER, -- (inverse of q) mod p
- # otherPrimeInfos OtherPrimeInfos OPTIONAL
- # }
- if priv[0] != 0:
- raise ValueError('Unable to read this file, version %s != 0' % priv[0])
- as_ints = map(int, priv[1:6])
- key = cls(*as_ints)
- exp1, exp2, coef = map(int, priv[6:9])
- if (key.exp1, key.exp2, key.coef) != (exp1, exp2, coef):
- warnings.warn(
- 'You have provided a malformed keyfile. Either the exponents '
- 'or the coefficient are incorrect. Using the correct values '
- 'instead.',
- UserWarning,
- )
- return key
- def _save_pkcs1_der(self):
- """Saves the private key in PKCS#1 DER format.
- :returns: the DER-encoded private key.
- :rtype: bytes
- """
- from pyasn1.type import univ, namedtype
- from pyasn1.codec.der import encoder
- class AsnPrivKey(univ.Sequence):
- componentType = namedtype.NamedTypes(
- namedtype.NamedType('version', univ.Integer()),
- namedtype.NamedType('modulus', univ.Integer()),
- namedtype.NamedType('publicExponent', univ.Integer()),
- namedtype.NamedType('privateExponent', univ.Integer()),
- namedtype.NamedType('prime1', univ.Integer()),
- namedtype.NamedType('prime2', univ.Integer()),
- namedtype.NamedType('exponent1', univ.Integer()),
- namedtype.NamedType('exponent2', univ.Integer()),
- namedtype.NamedType('coefficient', univ.Integer()),
- )
- # Create the ASN object
- asn_key = AsnPrivKey()
- asn_key.setComponentByName('version', 0)
- asn_key.setComponentByName('modulus', self.n)
- asn_key.setComponentByName('publicExponent', self.e)
- asn_key.setComponentByName('privateExponent', self.d)
- asn_key.setComponentByName('prime1', self.p)
- asn_key.setComponentByName('prime2', self.q)
- asn_key.setComponentByName('exponent1', self.exp1)
- asn_key.setComponentByName('exponent2', self.exp2)
- asn_key.setComponentByName('coefficient', self.coef)
- return encoder.encode(asn_key)
- @classmethod
- def _load_pkcs1_pem(cls, keyfile):
- """Loads a PKCS#1 PEM-encoded private key file.
- The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and
- after the "-----END RSA PRIVATE KEY-----" lines is ignored.
- :param keyfile: contents of a PEM-encoded file that contains the private
- key.
- :type keyfile: bytes
- :return: a PrivateKey object
- """
- der = rsa.pem.load_pem(keyfile, b'RSA PRIVATE KEY')
- return cls._load_pkcs1_der(der)
- def _save_pkcs1_pem(self):
- """Saves a PKCS#1 PEM-encoded private key file.
- :return: contents of a PEM-encoded file that contains the private key.
- :rtype: bytes
- """
- der = self._save_pkcs1_der()
- return rsa.pem.save_pem(der, b'RSA PRIVATE KEY')
- def find_p_q(nbits, getprime_func=rsa.prime.getprime, accurate=True):
- """Returns a tuple of two different primes of nbits bits each.
- The resulting p * q has exacty 2 * nbits bits, and the returned p and q
- will not be equal.
- :param nbits: the number of bits in each of p and q.
- :param getprime_func: the getprime function, defaults to
- :py:func:`rsa.prime.getprime`.
- *Introduced in Python-RSA 3.1*
- :param accurate: whether to enable accurate mode or not.
- :returns: (p, q), where p > q
- >>> (p, q) = find_p_q(128)
- >>> from rsa import common
- >>> common.bit_size(p * q)
- 256
- When not in accurate mode, the number of bits can be slightly less
- >>> (p, q) = find_p_q(128, accurate=False)
- >>> from rsa import common
- >>> common.bit_size(p * q) <= 256
- True
- >>> common.bit_size(p * q) > 240
- True
- """
- total_bits = nbits * 2
- # Make sure that p and q aren't too close or the factoring programs can
- # factor n.
- shift = nbits // 16
- pbits = nbits + shift
- qbits = nbits - shift
- # Choose the two initial primes
- log.debug('find_p_q(%i): Finding p', nbits)
- p = getprime_func(pbits)
- log.debug('find_p_q(%i): Finding q', nbits)
- q = getprime_func(qbits)
- def is_acceptable(p, q):
- """Returns True iff p and q are acceptable:
- - p and q differ
- - (p * q) has the right nr of bits (when accurate=True)
- """
- if p == q:
- return False
- if not accurate:
- return True
- # Make sure we have just the right amount of bits
- found_size = rsa.common.bit_size(p * q)
- return total_bits == found_size
- # Keep choosing other primes until they match our requirements.
- change_p = False
- while not is_acceptable(p, q):
- # Change p on one iteration and q on the other
- if change_p:
- p = getprime_func(pbits)
- else:
- q = getprime_func(qbits)
- change_p = not change_p
- # We want p > q as described on
- # http://www.di-mgt.com.au/rsa_alg.html#crt
- return max(p, q), min(p, q)
- def calculate_keys_custom_exponent(p, q, exponent):
- """Calculates an encryption and a decryption key given p, q and an exponent,
- and returns them as a tuple (e, d)
- :param p: the first large prime
- :param q: the second large prime
- :param exponent: the exponent for the key; only change this if you know
- what you're doing, as the exponent influences how difficult your
- private key can be cracked. A very common choice for e is 65537.
- :type exponent: int
- """
- phi_n = (p - 1) * (q - 1)
- try:
- d = rsa.common.inverse(exponent, phi_n)
- except rsa.common.NotRelativePrimeError as ex:
- raise rsa.common.NotRelativePrimeError(
- exponent, phi_n, ex.d,
- msg="e (%d) and phi_n (%d) are not relatively prime (divider=%i)" %
- (exponent, phi_n, ex.d))
- if (exponent * d) % phi_n != 1:
- raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
- "phi_n (%d)" % (exponent, d, phi_n))
- return exponent, d
- def calculate_keys(p, q):
- """Calculates an encryption and a decryption key given p and q, and
- returns them as a tuple (e, d)
- :param p: the first large prime
- :param q: the second large prime
- :return: tuple (e, d) with the encryption and decryption exponents.
- """
- return calculate_keys_custom_exponent(p, q, DEFAULT_EXPONENT)
- def gen_keys(nbits, getprime_func, accurate=True, exponent=DEFAULT_EXPONENT):
- """Generate RSA keys of nbits bits. Returns (p, q, e, d).
- Note: this can take a long time, depending on the key size.
- :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
- ``q`` will use ``nbits/2`` bits.
- :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
- with similar signature.
- :param exponent: the exponent for the key; only change this if you know
- what you're doing, as the exponent influences how difficult your
- private key can be cracked. A very common choice for e is 65537.
- :type exponent: int
- """
- # Regenerate p and q values, until calculate_keys doesn't raise a
- # ValueError.
- while True:
- (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
- try:
- (e, d) = calculate_keys_custom_exponent(p, q, exponent=exponent)
- break
- except ValueError:
- pass
- return p, q, e, d
- def newkeys(nbits, accurate=True, poolsize=1, exponent=DEFAULT_EXPONENT):
- """Generates public and private keys, and returns them as (pub, priv).
- The public key is also known as the 'encryption key', and is a
- :py:class:`rsa.PublicKey` object. The private key is also known as the
- 'decryption key' and is a :py:class:`rsa.PrivateKey` object.
- :param nbits: the number of bits required to store ``n = p*q``.
- :param accurate: when True, ``n`` will have exactly the number of bits you
- asked for. However, this makes key generation much slower. When False,
- `n`` may have slightly less bits.
- :param poolsize: the number of processes to use to generate the prime
- numbers. If set to a number > 1, a parallel algorithm will be used.
- This requires Python 2.6 or newer.
- :param exponent: the exponent for the key; only change this if you know
- what you're doing, as the exponent influences how difficult your
- private key can be cracked. A very common choice for e is 65537.
- :type exponent: int
- :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)
- The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
- Python 2.6 or newer.
- """
- if nbits < 16:
- raise ValueError('Key too small')
- if poolsize < 1:
- raise ValueError('Pool size (%i) should be >= 1' % poolsize)
- # Determine which getprime function to use
- if poolsize > 1:
- from rsa import parallel
- import functools
- getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
- else:
- getprime_func = rsa.prime.getprime
- # Generate the key components
- (p, q, e, d) = gen_keys(nbits, getprime_func, accurate=accurate, exponent=exponent)
- # Create the key objects
- n = p * q
- return (
- PublicKey(n, e),
- PrivateKey(n, e, d, p, q)
- )
- __all__ = ['PublicKey', 'PrivateKey', 'newkeys']
- if __name__ == '__main__':
- import doctest
- try:
- for count in range(100):
- (failures, tests) = doctest.testmod()
- if failures:
- break
- if (count % 10 == 0 and count) or count == 1:
- print('%i times' % count)
- except KeyboardInterrupt:
- print('Aborted')
- else:
- print('Doctests done')
|