123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- from __future__ import division, print_function, absolute_import
- from multiprocessing import Pool
- from multiprocessing.pool import Pool as PWL
- import numpy as np
- from numpy.testing import assert_equal, assert_
- from pytest import raises as assert_raises
- from scipy._lib._util import _aligned_zeros, check_random_state, MapWrapper
- def test__aligned_zeros():
- niter = 10
- def check(shape, dtype, order, align):
- err_msg = repr((shape, dtype, order, align))
- x = _aligned_zeros(shape, dtype, order, align=align)
- if align is None:
- align = np.dtype(dtype).alignment
- assert_equal(x.__array_interface__['data'][0] % align, 0)
- if hasattr(shape, '__len__'):
- assert_equal(x.shape, shape, err_msg)
- else:
- assert_equal(x.shape, (shape,), err_msg)
- assert_equal(x.dtype, dtype)
- if order == "C":
- assert_(x.flags.c_contiguous, err_msg)
- elif order == "F":
- if x.size > 0:
- # Size-0 arrays get invalid flags on Numpy 1.5
- assert_(x.flags.f_contiguous, err_msg)
- elif order is None:
- assert_(x.flags.c_contiguous, err_msg)
- else:
- raise ValueError()
- # try various alignments
- for align in [1, 2, 3, 4, 8, 16, 32, 64, None]:
- for n in [0, 1, 3, 11]:
- for order in ["C", "F", None]:
- for dtype in [np.uint8, np.float64]:
- for shape in [n, (1, 2, 3, n)]:
- for j in range(niter):
- check(shape, dtype, order, align)
- def test_check_random_state():
- # If seed is None, return the RandomState singleton used by np.random.
- # If seed is an int, return a new RandomState instance seeded with seed.
- # If seed is already a RandomState instance, return it.
- # Otherwise raise ValueError.
- rsi = check_random_state(1)
- assert_equal(type(rsi), np.random.RandomState)
- rsi = check_random_state(rsi)
- assert_equal(type(rsi), np.random.RandomState)
- rsi = check_random_state(None)
- assert_equal(type(rsi), np.random.RandomState)
- assert_raises(ValueError, check_random_state, 'a')
- class TestMapWrapper(object):
- def setup_method(self):
- self.input = np.arange(10.)
- self.output = np.sin(self.input)
- def test_serial(self):
- p = MapWrapper(1)
- assert_(p._mapfunc is map)
- assert_(p.pool is None)
- assert_(p._own_pool is False)
- out = list(p(np.sin, self.input))
- assert_equal(out, self.output)
- with assert_raises(RuntimeError):
- p = MapWrapper(0)
- def test_parallel(self):
- with MapWrapper(2) as p:
- out = p(np.sin, self.input)
- assert_equal(list(out), self.output)
- assert_(p._own_pool is True)
- assert_(isinstance(p.pool, PWL))
- assert_(p._mapfunc is not None)
- # the context manager should've closed the internal pool
- # check that it has by asking it to calculate again.
- with assert_raises(Exception) as excinfo:
- p(np.sin, self.input)
- # on py27 an AssertionError is raised, on >py27 it's a ValueError
- err_type = excinfo.type
- assert_((err_type is ValueError) or (err_type is AssertionError))
- # can also set a PoolWrapper up with a map-like callable instance
- try:
- p = Pool(2)
- q = MapWrapper(p.map)
- assert_(q._own_pool is False)
- q.close()
- # closing the PoolWrapper shouldn't close the internal pool
- # because it didn't create it
- out = p.map(np.sin, self.input)
- assert_equal(list(out), self.output)
- finally:
- p.close()
|