123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739 |
- """
- Real spectrum transforms (DCT, DST, MDCT)
- """
- from __future__ import division, print_function, absolute_import
- __all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
- import numpy as np
- from scipy.fftpack import _fftpack
- from scipy.fftpack.basic import _datacopied, _fix_shape, _asfarray
- from scipy.fftpack.helper import _init_nd_shape_and_axes
- import atexit
- atexit.register(_fftpack.destroy_ddct1_cache)
- atexit.register(_fftpack.destroy_ddct2_cache)
- atexit.register(_fftpack.destroy_ddct4_cache)
- atexit.register(_fftpack.destroy_dct1_cache)
- atexit.register(_fftpack.destroy_dct2_cache)
- atexit.register(_fftpack.destroy_dct4_cache)
- atexit.register(_fftpack.destroy_ddst1_cache)
- atexit.register(_fftpack.destroy_ddst2_cache)
- atexit.register(_fftpack.destroy_dst1_cache)
- atexit.register(_fftpack.destroy_dst2_cache)
- def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
- """
- Return multidimensional Discrete Cosine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- shape : int or array_like of ints or None, optional
- The shape of the result. If both `shape` and `axes` (see below) are
- None, `shape` is ``x.shape``; if `shape` is None but `axes` is
- not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
- If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
- If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
- length ``shape[i]``.
- If any element of `shape` is -1, the size of the corresponding
- dimension of `x` is used.
- axes : int or array_like of ints or None, optional
- Axes along which the DCT is computed.
- The default is over all axes.
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- idctn : Inverse multidimensional DCT
- Notes
- -----
- For full details of the DCT types and normalization modes, as well as
- references, see `dct`.
- Examples
- --------
- >>> from scipy.fftpack import dctn, idctn
- >>> y = np.random.randn(16, 16)
- >>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
- True
- """
- x = np.asanyarray(x)
- shape, axes = _init_nd_shape_and_axes(x, shape, axes)
- for n, ax in zip(shape, axes):
- x = dct(x, type=type, n=n, axis=ax, norm=norm, overwrite_x=overwrite_x)
- return x
- def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
- """
- Return multidimensional Discrete Cosine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- shape : int or array_like of ints or None, optional
- The shape of the result. If both `shape` and `axes` (see below) are
- None, `shape` is ``x.shape``; if `shape` is None but `axes` is
- not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
- If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
- If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
- length ``shape[i]``.
- If any element of `shape` is -1, the size of the corresponding
- dimension of `x` is used.
- axes : int or array_like of ints or None, optional
- Axes along which the IDCT is computed.
- The default is over all axes.
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- dctn : multidimensional DCT
- Notes
- -----
- For full details of the IDCT types and normalization modes, as well as
- references, see `idct`.
- Examples
- --------
- >>> from scipy.fftpack import dctn, idctn
- >>> y = np.random.randn(16, 16)
- >>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
- True
- """
- x = np.asanyarray(x)
- shape, axes = _init_nd_shape_and_axes(x, shape, axes)
- for n, ax in zip(shape, axes):
- x = idct(x, type=type, n=n, axis=ax, norm=norm,
- overwrite_x=overwrite_x)
- return x
- def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
- """
- Return multidimensional Discrete Sine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- shape : int or array_like of ints or None, optional
- The shape of the result. If both `shape` and `axes` (see below) are
- None, `shape` is ``x.shape``; if `shape` is None but `axes` is
- not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
- If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
- If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
- length ``shape[i]``.
- If any element of `shape` is -1, the size of the corresponding
- dimension of `x` is used.
- axes : int or array_like of ints or None, optional
- Axes along which the DCT is computed.
- The default is over all axes.
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- idstn : Inverse multidimensional DST
- Notes
- -----
- For full details of the DST types and normalization modes, as well as
- references, see `dst`.
- Examples
- --------
- >>> from scipy.fftpack import dstn, idstn
- >>> y = np.random.randn(16, 16)
- >>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
- True
- """
- x = np.asanyarray(x)
- shape, axes = _init_nd_shape_and_axes(x, shape, axes)
- for n, ax in zip(shape, axes):
- x = dst(x, type=type, n=n, axis=ax, norm=norm, overwrite_x=overwrite_x)
- return x
- def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
- """
- Return multidimensional Discrete Sine Transform along the specified axes.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- shape : int or array_like of ints or None, optional
- The shape of the result. If both `shape` and `axes` (see below) are
- None, `shape` is ``x.shape``; if `shape` is None but `axes` is
- not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
- If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
- If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
- length ``shape[i]``.
- If any element of `shape` is -1, the size of the corresponding
- dimension of `x` is used.
- axes : int or array_like of ints or None, optional
- Axes along which the IDCT is computed.
- The default is over all axes.
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- dctn : multidimensional DST
- Notes
- -----
- For full details of the IDST types and normalization modes, as well as
- references, see `idst`.
- Examples
- --------
- >>> from scipy.fftpack import dstn, idstn
- >>> y = np.random.randn(16, 16)
- >>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
- True
- """
- x = np.asanyarray(x)
- shape, axes = _init_nd_shape_and_axes(x, shape, axes)
- for n, ax in zip(shape, axes):
- x = idst(x, type=type, n=n, axis=ax, norm=norm,
- overwrite_x=overwrite_x)
- return x
- def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
- """
- Return the Discrete Cosine Transform of arbitrary type sequence x.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the dct is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- y : ndarray of real
- The transformed input array.
- See Also
- --------
- idct : Inverse DCT
- Notes
- -----
- For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
- MATLAB ``dct(x)``.
- There are theoretically 8 types of the DCT, only the first 4 types are
- implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
- Inverse DCT generally refers to DCT type 3.
- **Type I**
- There are several definitions of the DCT-I; we use the following
- (for ``norm=None``)::
- N-2
- y[k] = x[0] + (-1)**k x[N-1] + 2 * sum x[n]*cos(pi*k*n/(N-1))
- n=1
- If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by
- a scaling factor of ``sqrt(2)``, and ``y[k]`` is multiplied by a
- scaling factor `f`::
- f = 0.5*sqrt(1/(N-1)) if k = 0 or N-1,
- f = 0.5*sqrt(2/(N-1)) otherwise.
- .. versionadded:: 1.2.0
- Orthonormalization in DCT-I.
- .. note::
- The DCT-I is only supported for input size > 1.
- **Type II**
- There are several definitions of the DCT-II; we use the following
- (for ``norm=None``)::
- N-1
- y[k] = 2* sum x[n]*cos(pi*k*(2n+1)/(2*N)), 0 <= k < N.
- n=0
- If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor `f`::
- f = sqrt(1/(4*N)) if k = 0,
- f = sqrt(1/(2*N)) otherwise.
- Which makes the corresponding matrix of coefficients orthonormal
- (``OO' = Id``).
- **Type III**
- There are several definitions, we use the following
- (for ``norm=None``)::
- N-1
- y[k] = x[0] + 2 * sum x[n]*cos(pi*(k+0.5)*n/N), 0 <= k < N.
- n=1
- or, for ``norm='ortho'`` and 0 <= k < N::
- N-1
- y[k] = x[0] / sqrt(N) + sqrt(2/N) * sum x[n]*cos(pi*(k+0.5)*n/N)
- n=1
- The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
- to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
- the orthonormalized DCT-II.
- **Type IV**
- There are several definitions of the DCT-IV; we use the following
- (for ``norm=None``)::
- N-1
- y[k] = 2* sum x[n]*cos(pi*(2k+1)*(2n+1)/(4*N)), 0 <= k < N.
- n=0
- If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor `f`::
- f = 0.5*sqrt(2/N)
- .. versionadded:: 1.2.0
- Support for DCT-IV.
- References
- ----------
- .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
- Makhoul, `IEEE Transactions on acoustics, speech and signal
- processing` vol. 28(1), pp. 27-34,
- :doi:`10.1109/TASSP.1980.1163351` (1980).
- .. [2] Wikipedia, "Discrete cosine transform",
- https://en.wikipedia.org/wiki/Discrete_cosine_transform
- Examples
- --------
- The Type 1 DCT is equivalent to the FFT (though faster) for real,
- even-symmetrical inputs. The output is also real and even-symmetrical.
- Half of the FFT input is used to generate half of the FFT output:
- >>> from scipy.fftpack import fft, dct
- >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
- array([ 30., -8., 6., -2., 6., -8.])
- >>> dct(np.array([4., 3., 5., 10.]), 1)
- array([ 30., -8., 6., -2.])
- """
- return _dct(x, type, n, axis, normalize=norm, overwrite_x=overwrite_x)
- def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
- """
- Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DCT (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the idct is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- idct : ndarray of real
- The transformed input array.
- See Also
- --------
- dct : Forward DCT
- Notes
- -----
- For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
- MATLAB ``idct(x)``.
- 'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
- IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
- 3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
- of type 4. For the definition of these types, see `dct`.
- Examples
- --------
- The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
- inputs. The output is also real and even-symmetrical. Half of the IFFT
- input is used to generate half of the IFFT output:
- >>> from scipy.fftpack import ifft, idct
- >>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
- array([ 4., 3., 5., 10., 5., 3.])
- >>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6
- array([ 4., 3., 5., 10.])
- """
- # Inverse/forward type table
- _TP = {1:1, 2:3, 3:2, 4:4}
- return _dct(x, _TP[type], n, axis, normalize=norm, overwrite_x=overwrite_x)
- def _get_dct_fun(type, dtype):
- try:
- name = {'float64':'ddct%d', 'float32':'dct%d'}[dtype.name]
- except KeyError:
- raise ValueError("dtype %s not supported" % dtype)
- try:
- f = getattr(_fftpack, name % type)
- except AttributeError as e:
- raise ValueError(str(e) + ". Type %d not understood" % type)
- return f
- def _get_norm_mode(normalize):
- try:
- nm = {None:0, 'ortho':1}[normalize]
- except KeyError:
- raise ValueError("Unknown normalize mode %s" % normalize)
- return nm
- def __fix_shape(x, n, axis, dct_or_dst):
- tmp = _asfarray(x)
- copy_made = _datacopied(tmp, x)
- if n is None:
- n = tmp.shape[axis]
- elif n != tmp.shape[axis]:
- tmp, copy_made2 = _fix_shape(tmp, n, axis)
- copy_made = copy_made or copy_made2
- if n < 1:
- raise ValueError("Invalid number of %s data points "
- "(%d) specified." % (dct_or_dst, n))
- return tmp, n, copy_made
- def _raw_dct(x0, type, n, axis, nm, overwrite_x):
- f = _get_dct_fun(type, x0.dtype)
- return _eval_fun(f, x0, n, axis, nm, overwrite_x)
- def _raw_dst(x0, type, n, axis, nm, overwrite_x):
- f = _get_dst_fun(type, x0.dtype)
- return _eval_fun(f, x0, n, axis, nm, overwrite_x)
- def _eval_fun(f, tmp, n, axis, nm, overwrite_x):
- if axis == -1 or axis == len(tmp.shape) - 1:
- return f(tmp, n, nm, overwrite_x)
- tmp = np.swapaxes(tmp, axis, -1)
- tmp = f(tmp, n, nm, overwrite_x)
- return np.swapaxes(tmp, axis, -1)
- def _dct(x, type, n=None, axis=-1, overwrite_x=False, normalize=None):
- """
- Return Discrete Cosine Transform of arbitrary type sequence x.
- Parameters
- ----------
- x : array_like
- input array.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the dct is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- z : ndarray
- """
- x0, n, copy_made = __fix_shape(x, n, axis, 'DCT')
- if type == 1 and n < 2:
- raise ValueError("DCT-I is not defined for size < 2")
- overwrite_x = overwrite_x or copy_made
- nm = _get_norm_mode(normalize)
- if np.iscomplexobj(x0):
- return (_raw_dct(x0.real, type, n, axis, nm, overwrite_x) + 1j *
- _raw_dct(x0.imag, type, n, axis, nm, overwrite_x))
- else:
- return _raw_dct(x0, type, n, axis, nm, overwrite_x)
- def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
- """
- Return the Discrete Sine Transform of arbitrary type sequence x.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DST (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the dst is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- dst : ndarray of reals
- The transformed input array.
- See Also
- --------
- idst : Inverse DST
- Notes
- -----
- For a single dimension array ``x``.
- There are theoretically 8 types of the DST for different combinations of
- even/odd boundary conditions and boundary off sets [1]_, only the first
- 3 types are implemented in scipy.
- **Type I**
- There are several definitions of the DST-I; we use the following
- for ``norm=None``. DST-I assumes the input is odd around n=-1 and n=N. ::
- N-1
- y[k] = 2 * sum x[n]*sin(pi*(k+1)*(n+1)/(N+1))
- n=0
- Note that the DST-I is only supported for input size > 1
- The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
- The orthonormalized DST-I is exactly its own inverse.
- **Type II**
- There are several definitions of the DST-II; we use the following
- for ``norm=None``. DST-II assumes the input is odd around n=-1/2 and
- n=N-1/2; the output is odd around k=-1 and even around k=N-1 ::
- N-1
- y[k] = 2* sum x[n]*sin(pi*(k+1)*(n+0.5)/N), 0 <= k < N.
- n=0
- if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor `f` ::
- f = sqrt(1/(4*N)) if k == 0
- f = sqrt(1/(2*N)) otherwise.
- **Type III**
- There are several definitions of the DST-III, we use the following
- (for ``norm=None``). DST-III assumes the input is odd around n=-1
- and even around n=N-1 ::
- N-2
- y[k] = x[N-1]*(-1)**k + 2* sum x[n]*sin(pi*(k+0.5)*(n+1)/N), 0 <= k < N.
- n=0
- The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
- to a factor `2N`. The orthonormalized DST-III is exactly the inverse of
- the orthonormalized DST-II.
- .. versionadded:: 0.11.0
- **Type IV**
- There are several definitions of the DST-IV, we use the following
- (for ``norm=None``). DST-IV assumes the input is odd around n=-0.5
- and even around n=N-0.5 ::
- N-1
- y[k] = 2* sum x[n]*sin(pi*(k+0.5)*(n+0.5)/N), 0 <= k < N.
- n=0
- The (unnormalized) DST-IV is its own inverse, up
- to a factor `2N`. The orthonormalized DST-IV is exactly its own inverse.
- .. versionadded:: 1.2.0
- Support for DST-IV.
- References
- ----------
- .. [1] Wikipedia, "Discrete sine transform",
- https://en.wikipedia.org/wiki/Discrete_sine_transform
- """
- return _dst(x, type, n, axis, normalize=norm, overwrite_x=overwrite_x)
- def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
- """
- Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
- Parameters
- ----------
- x : array_like
- The input array.
- type : {1, 2, 3, 4}, optional
- Type of the DST (see Notes). Default type is 2.
- n : int, optional
- Length of the transform. If ``n < x.shape[axis]``, `x` is
- truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
- default results in ``n = x.shape[axis]``.
- axis : int, optional
- Axis along which the idst is computed; the default is over the
- last axis (i.e., ``axis=-1``).
- norm : {None, 'ortho'}, optional
- Normalization mode (see Notes). Default is None.
- overwrite_x : bool, optional
- If True, the contents of `x` can be destroyed; the default is False.
- Returns
- -------
- idst : ndarray of real
- The transformed input array.
- See Also
- --------
- dst : Forward DST
- Notes
- -----
- 'The' IDST is the IDST of type 2, which is the same as DST of type 3.
- IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
- 3, and IDST of type 3 is the DST of type 2. For the definition of these
- types, see `dst`.
- .. versionadded:: 0.11.0
- """
- # Inverse/forward type table
- _TP = {1:1, 2:3, 3:2, 4:4}
- return _dst(x, _TP[type], n, axis, normalize=norm, overwrite_x=overwrite_x)
- def _get_dst_fun(type, dtype):
- try:
- name = {'float64':'ddst%d', 'float32':'dst%d'}[dtype.name]
- except KeyError:
- raise ValueError("dtype %s not supported" % dtype)
- try:
- f = getattr(_fftpack, name % type)
- except AttributeError as e:
- raise ValueError(str(e) + ". Type %d not understood" % type)
- return f
- def _dst(x, type, n=None, axis=-1, overwrite_x=False, normalize=None):
- """
- Return Discrete Sine Transform of arbitrary type sequence x.
- Parameters
- ----------
- x : array_like
- input array.
- n : int, optional
- Length of the transform.
- axis : int, optional
- Axis along which the dst is computed. (default=-1)
- overwrite_x : bool, optional
- If True the contents of x can be destroyed. (default=False)
- Returns
- -------
- z : real ndarray
- """
- x0, n, copy_made = __fix_shape(x, n, axis, 'DST')
- if type == 1 and n < 2:
- raise ValueError("DST-I is not defined for size < 2")
- overwrite_x = overwrite_x or copy_made
- nm = _get_norm_mode(normalize)
- if np.iscomplexobj(x0):
- return (_raw_dst(x0.real, type, n, axis, nm, overwrite_x) + 1j *
- _raw_dst(x0.imag, type, n, axis, nm, overwrite_x))
- else:
- return _raw_dst(x0, type, n, axis, nm, overwrite_x)
|