123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- # Created by Pearu Peterson, September 2002
- from __future__ import division, print_function, absolute_import
- __usage__ = """
- Build fftpack:
- python setup_fftpack.py build
- Run tests if scipy is installed:
- python -c 'import scipy;scipy.fftpack.test(<level>)'
- Run tests if fftpack is not installed:
- python tests/test_helper.py [<level>]
- """
- from pytest import raises as assert_raises
- from numpy.testing import assert_array_almost_equal, assert_equal, assert_
- from scipy.fftpack import fftshift,ifftshift,fftfreq,rfftfreq
- from scipy.fftpack.helper import (next_fast_len,
- _init_nd_shape_and_axes,
- _init_nd_shape_and_axes_sorted)
- from numpy import pi, random
- import numpy as np
- class TestFFTShift(object):
- def test_definition(self):
- x = [0,1,2,3,4,-4,-3,-2,-1]
- y = [-4,-3,-2,-1,0,1,2,3,4]
- assert_array_almost_equal(fftshift(x),y)
- assert_array_almost_equal(ifftshift(y),x)
- x = [0,1,2,3,4,-5,-4,-3,-2,-1]
- y = [-5,-4,-3,-2,-1,0,1,2,3,4]
- assert_array_almost_equal(fftshift(x),y)
- assert_array_almost_equal(ifftshift(y),x)
- def test_inverse(self):
- for n in [1,4,9,100,211]:
- x = random.random((n,))
- assert_array_almost_equal(ifftshift(fftshift(x)),x)
- class TestFFTFreq(object):
- def test_definition(self):
- x = [0,1,2,3,4,-4,-3,-2,-1]
- assert_array_almost_equal(9*fftfreq(9),x)
- assert_array_almost_equal(9*pi*fftfreq(9,pi),x)
- x = [0,1,2,3,4,-5,-4,-3,-2,-1]
- assert_array_almost_equal(10*fftfreq(10),x)
- assert_array_almost_equal(10*pi*fftfreq(10,pi),x)
- class TestRFFTFreq(object):
- def test_definition(self):
- x = [0,1,1,2,2,3,3,4,4]
- assert_array_almost_equal(9*rfftfreq(9),x)
- assert_array_almost_equal(9*pi*rfftfreq(9,pi),x)
- x = [0,1,1,2,2,3,3,4,4,5]
- assert_array_almost_equal(10*rfftfreq(10),x)
- assert_array_almost_equal(10*pi*rfftfreq(10,pi),x)
- class TestNextOptLen(object):
- def test_next_opt_len(self):
- random.seed(1234)
- def nums():
- for j in range(1, 1000):
- yield j
- yield 2**5 * 3**5 * 4**5 + 1
- for n in nums():
- m = next_fast_len(n)
- msg = "n=%d, m=%d" % (n, m)
- assert_(m >= n, msg)
- # check regularity
- k = m
- for d in [2, 3, 5]:
- while True:
- a, b = divmod(k, d)
- if b == 0:
- k = a
- else:
- break
- assert_equal(k, 1, err_msg=msg)
- def test_np_integers(self):
- ITYPES = [np.int16, np.int32, np.int64, np.uint16, np.uint32, np.uint64]
- for ityp in ITYPES:
- x = ityp(12345)
- testN = next_fast_len(x)
- assert_equal(testN, next_fast_len(int(x)))
- def test_next_opt_len_strict(self):
- hams = {
- 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 8, 8: 8, 14: 15, 15: 15,
- 16: 16, 17: 18, 1021: 1024, 1536: 1536, 51200000: 51200000,
- 510183360: 510183360, 510183360 + 1: 512000000,
- 511000000: 512000000,
- 854296875: 854296875, 854296875 + 1: 859963392,
- 196608000000: 196608000000, 196608000000 + 1: 196830000000,
- 8789062500000: 8789062500000, 8789062500000 + 1: 8796093022208,
- 206391214080000: 206391214080000,
- 206391214080000 + 1: 206624260800000,
- 470184984576000: 470184984576000,
- 470184984576000 + 1: 470715894135000,
- 7222041363087360: 7222041363087360,
- 7222041363087360 + 1: 7230196133913600,
- # power of 5 5**23
- 11920928955078125: 11920928955078125,
- 11920928955078125 - 1: 11920928955078125,
- # power of 3 3**34
- 16677181699666569: 16677181699666569,
- 16677181699666569 - 1: 16677181699666569,
- # power of 2 2**54
- 18014398509481984: 18014398509481984,
- 18014398509481984 - 1: 18014398509481984,
- # above this, int(ceil(n)) == int(ceil(n+1))
- 19200000000000000: 19200000000000000,
- 19200000000000000 + 1: 19221679687500000,
- 288230376151711744: 288230376151711744,
- 288230376151711744 + 1: 288325195312500000,
- 288325195312500000 - 1: 288325195312500000,
- 288325195312500000: 288325195312500000,
- 288325195312500000 + 1: 288555831593533440,
- # power of 3 3**83
- 3990838394187339929534246675572349035227 - 1:
- 3990838394187339929534246675572349035227,
- 3990838394187339929534246675572349035227:
- 3990838394187339929534246675572349035227,
- # power of 2 2**135
- 43556142965880123323311949751266331066368 - 1:
- 43556142965880123323311949751266331066368,
- 43556142965880123323311949751266331066368:
- 43556142965880123323311949751266331066368,
- # power of 5 5**57
- 6938893903907228377647697925567626953125 - 1:
- 6938893903907228377647697925567626953125,
- 6938893903907228377647697925567626953125:
- 6938893903907228377647697925567626953125,
- # http://www.drdobbs.com/228700538
- # 2**96 * 3**1 * 5**13
- 290142196707511001929482240000000000000 - 1:
- 290142196707511001929482240000000000000,
- 290142196707511001929482240000000000000:
- 290142196707511001929482240000000000000,
- 290142196707511001929482240000000000000 + 1:
- 290237644800000000000000000000000000000,
- # 2**36 * 3**69 * 5**7
- 4479571262811807241115438439905203543080960000000 - 1:
- 4479571262811807241115438439905203543080960000000,
- 4479571262811807241115438439905203543080960000000:
- 4479571262811807241115438439905203543080960000000,
- 4479571262811807241115438439905203543080960000000 + 1:
- 4480327901140333639941336854183943340032000000000,
- # 2**37 * 3**44 * 5**42
- 30774090693237851027531250000000000000000000000000000000000000 - 1:
- 30774090693237851027531250000000000000000000000000000000000000,
- 30774090693237851027531250000000000000000000000000000000000000:
- 30774090693237851027531250000000000000000000000000000000000000,
- 30774090693237851027531250000000000000000000000000000000000000 + 1:
- 30778180617309082445871527002041377406962596539492679680000000,
- }
- for x, y in hams.items():
- assert_equal(next_fast_len(x), y)
- class Test_init_nd_shape_and_axes(object):
- def test_py_0d_defaults(self):
- x = 4
- shape = None
- axes = None
- shape_expected = np.array([])
- axes_expected = np.array([])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_0d_defaults(self):
- x = np.array(7.)
- shape = None
- axes = None
- shape_expected = np.array([])
- axes_expected = np.array([])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_py_1d_defaults(self):
- x = [1, 2, 3]
- shape = None
- axes = None
- shape_expected = np.array([3])
- axes_expected = np.array([0])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_1d_defaults(self):
- x = np.arange(0, 1, .1)
- shape = None
- axes = None
- shape_expected = np.array([10])
- axes_expected = np.array([0])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_py_2d_defaults(self):
- x = [[1, 2, 3, 4],
- [5, 6, 7, 8]]
- shape = None
- axes = None
- shape_expected = np.array([2, 4])
- axes_expected = np.array([0, 1])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_2d_defaults(self):
- x = np.arange(0, 1, .1).reshape(5, 2)
- shape = None
- axes = None
- shape_expected = np.array([5, 2])
- axes_expected = np.array([0, 1])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_defaults(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = None
- axes = None
- shape_expected = np.array([6, 2, 5, 3, 4])
- axes_expected = np.array([0, 1, 2, 3, 4])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_shape(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = [10, -1, -1, 1, 4]
- axes = None
- shape_expected = np.array([10, 2, 5, 1, 4])
- axes_expected = np.array([0, 1, 2, 3, 4])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_axes(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = None
- axes = [4, 1, 2]
- shape_expected = np.array([4, 2, 5])
- axes_expected = np.array([4, 1, 2])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_axes_sorted(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = None
- axes = [4, 1, 2]
- shape_expected = np.array([2, 5, 4])
- axes_expected = np.array([1, 2, 4])
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_shape_axes(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = [10, -1, 2]
- axes = [1, 0, 3]
- shape_expected = np.array([10, 6, 2])
- axes_expected = np.array([1, 0, 3])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_shape_axes_sorted(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = [10, -1, 2]
- axes = [1, 0, 3]
- shape_expected = np.array([6, 10, 2])
- axes_expected = np.array([0, 1, 3])
- shape_res, axes_res = _init_nd_shape_and_axes_sorted(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_errors(self):
- with assert_raises(ValueError,
- match="when given, axes values must be a scalar"
- " or vector"):
- _init_nd_shape_and_axes([0], shape=None, axes=[[1, 2], [3, 4]])
- with assert_raises(ValueError,
- match="when given, axes values must be integers"):
- _init_nd_shape_and_axes([0], shape=None, axes=[1., 2., 3., 4.])
- with assert_raises(ValueError,
- match="axes exceeds dimensionality of input"):
- _init_nd_shape_and_axes([0], shape=None, axes=[1])
- with assert_raises(ValueError,
- match="axes exceeds dimensionality of input"):
- _init_nd_shape_and_axes([0], shape=None, axes=[-2])
- with assert_raises(ValueError,
- match="all axes must be unique"):
- _init_nd_shape_and_axes([0], shape=None, axes=[0, 0])
- with assert_raises(ValueError,
- match="when given, shape values must be a scalar "
- "or vector"):
- _init_nd_shape_and_axes([0], shape=[[1, 2], [3, 4]], axes=None)
- with assert_raises(ValueError,
- match="when given, shape values must be integers"):
- _init_nd_shape_and_axes([0], shape=[1., 2., 3., 4.], axes=None)
- with assert_raises(ValueError,
- match="when given, axes and shape arguments"
- " have to be of the same length"):
- _init_nd_shape_and_axes(np.zeros([1, 1, 1, 1]),
- shape=[1, 2, 3], axes=[1])
- with assert_raises(ValueError,
- match="invalid number of data points"
- r" \(\[0\]\) specified"):
- _init_nd_shape_and_axes([0], shape=[0], axes=None)
- with assert_raises(ValueError,
- match="invalid number of data points"
- r" \(\[-2\]\) specified"):
- _init_nd_shape_and_axes([0], shape=-2, axes=None)
|