123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818 |
- from __future__ import division, print_function, absolute_import
- from itertools import product
- from numpy.testing import (assert_, assert_allclose,
- assert_equal, assert_no_warnings)
- import pytest
- from pytest import raises as assert_raises
- from scipy._lib._numpy_compat import suppress_warnings
- import numpy as np
- from scipy.optimize._numdiff import group_columns
- from scipy.integrate import solve_ivp, RK23, RK45, Radau, BDF, LSODA
- from scipy.integrate import OdeSolution
- from scipy.integrate._ivp.common import num_jac
- from scipy.integrate._ivp.base import ConstantDenseOutput
- from scipy.sparse import coo_matrix, csc_matrix
- def fun_linear(t, y):
- return np.array([-y[0] - 5 * y[1], y[0] + y[1]])
- def jac_linear():
- return np.array([[-1, -5], [1, 1]])
- def sol_linear(t):
- return np.vstack((-5 * np.sin(2 * t),
- 2 * np.cos(2 * t) + np.sin(2 * t)))
- def fun_rational(t, y):
- return np.array([y[1] / t,
- y[1] * (y[0] + 2 * y[1] - 1) / (t * (y[0] - 1))])
- def fun_rational_vectorized(t, y):
- return np.vstack((y[1] / t,
- y[1] * (y[0] + 2 * y[1] - 1) / (t * (y[0] - 1))))
- def jac_rational(t, y):
- return np.array([
- [0, 1 / t],
- [-2 * y[1] ** 2 / (t * (y[0] - 1) ** 2),
- (y[0] + 4 * y[1] - 1) / (t * (y[0] - 1))]
- ])
- def jac_rational_sparse(t, y):
- return csc_matrix([
- [0, 1 / t],
- [-2 * y[1] ** 2 / (t * (y[0] - 1) ** 2),
- (y[0] + 4 * y[1] - 1) / (t * (y[0] - 1))]
- ])
- def sol_rational(t):
- return np.asarray((t / (t + 10), 10 * t / (t + 10) ** 2))
- def fun_medazko(t, y):
- n = y.shape[0] // 2
- k = 100
- c = 4
- phi = 2 if t <= 5 else 0
- y = np.hstack((phi, 0, y, y[-2]))
- d = 1 / n
- j = np.arange(n) + 1
- alpha = 2 * (j * d - 1) ** 3 / c ** 2
- beta = (j * d - 1) ** 4 / c ** 2
- j_2_p1 = 2 * j + 2
- j_2_m3 = 2 * j - 2
- j_2_m1 = 2 * j
- j_2 = 2 * j + 1
- f = np.empty(2 * n)
- f[::2] = (alpha * (y[j_2_p1] - y[j_2_m3]) / (2 * d) +
- beta * (y[j_2_m3] - 2 * y[j_2_m1] + y[j_2_p1]) / d ** 2 -
- k * y[j_2_m1] * y[j_2])
- f[1::2] = -k * y[j_2] * y[j_2_m1]
- return f
- def medazko_sparsity(n):
- cols = []
- rows = []
- i = np.arange(n) * 2
- cols.append(i[1:])
- rows.append(i[1:] - 2)
- cols.append(i)
- rows.append(i)
- cols.append(i)
- rows.append(i + 1)
- cols.append(i[:-1])
- rows.append(i[:-1] + 2)
- i = np.arange(n) * 2 + 1
- cols.append(i)
- rows.append(i)
- cols.append(i)
- rows.append(i - 1)
- cols = np.hstack(cols)
- rows = np.hstack(rows)
- return coo_matrix((np.ones_like(cols), (cols, rows)))
- def fun_complex(t, y):
- return -y
- def jac_complex(t, y):
- return -np.eye(y.shape[0])
- def jac_complex_sparse(t, y):
- return csc_matrix(jac_complex(t, y))
- def sol_complex(t):
- y = (0.5 + 1j) * np.exp(-t)
- return y.reshape((1, -1))
- def compute_error(y, y_true, rtol, atol):
- e = (y - y_true) / (atol + rtol * np.abs(y_true))
- return np.sqrt(np.sum(np.real(e * e.conj()), axis=0) / e.shape[0])
- def test_integration():
- rtol = 1e-3
- atol = 1e-6
- y0 = [1/3, 2/9]
- for vectorized, method, t_span, jac in product(
- [False, True],
- ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA'],
- [[5, 9], [5, 1]],
- [None, jac_rational, jac_rational_sparse]):
- if vectorized:
- fun = fun_rational_vectorized
- else:
- fun = fun_rational
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "The following arguments have no effect for a chosen solver: `jac`")
- res = solve_ivp(fun, t_span, y0, rtol=rtol,
- atol=atol, method=method, dense_output=True,
- jac=jac, vectorized=vectorized)
- assert_equal(res.t[0], t_span[0])
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- assert_(res.nfev < 40)
- if method in ['RK23', 'RK45', 'LSODA']:
- assert_equal(res.njev, 0)
- assert_equal(res.nlu, 0)
- else:
- assert_(0 < res.njev < 3)
- assert_(0 < res.nlu < 10)
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- tc = np.linspace(*t_span)
- yc_true = sol_rational(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, rtol, atol)
- assert_(np.all(e < 5))
- tc = (t_span[0] + t_span[-1]) / 2
- yc_true = sol_rational(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, rtol, atol)
- assert_(np.all(e < 5))
- # LSODA for some reasons doesn't pass the polynomial through the
- # previous points exactly after the order change. It might be some
- # bug in LSOSA implementation or maybe we missing something.
- if method != 'LSODA':
- assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
- def test_integration_complex():
- rtol = 1e-3
- atol = 1e-6
- y0 = [0.5 + 1j]
- t_span = [0, 1]
- tc = np.linspace(t_span[0], t_span[1])
- for method, jac in product(['RK23', 'RK45', 'BDF'],
- [None, jac_complex, jac_complex_sparse]):
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "The following arguments have no effect for a chosen solver: `jac`")
- res = solve_ivp(fun_complex, t_span, y0, method=method,
- dense_output=True, rtol=rtol, atol=atol, jac=jac)
- assert_equal(res.t[0], t_span[0])
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- assert_(res.nfev < 25)
- if method == 'BDF':
- assert_equal(res.njev, 1)
- assert_(res.nlu < 6)
- else:
- assert_equal(res.njev, 0)
- assert_equal(res.nlu, 0)
- y_true = sol_complex(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- yc_true = sol_complex(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, rtol, atol)
- assert_(np.all(e < 5))
- def test_integration_sparse_difference():
- n = 200
- t_span = [0, 20]
- y0 = np.zeros(2 * n)
- y0[1::2] = 1
- sparsity = medazko_sparsity(n)
- for method in ['BDF', 'Radau']:
- res = solve_ivp(fun_medazko, t_span, y0, method=method,
- jac_sparsity=sparsity)
- assert_equal(res.t[0], t_span[0])
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- assert_allclose(res.y[78, -1], 0.233994e-3, rtol=1e-2)
- assert_allclose(res.y[79, -1], 0, atol=1e-3)
- assert_allclose(res.y[148, -1], 0.359561e-3, rtol=1e-2)
- assert_allclose(res.y[149, -1], 0, atol=1e-3)
- assert_allclose(res.y[198, -1], 0.117374129e-3, rtol=1e-2)
- assert_allclose(res.y[199, -1], 0.6190807e-5, atol=1e-3)
- assert_allclose(res.y[238, -1], 0, atol=1e-3)
- assert_allclose(res.y[239, -1], 0.9999997, rtol=1e-2)
- def test_integration_const_jac():
- rtol = 1e-3
- atol = 1e-6
- y0 = [0, 2]
- t_span = [0, 2]
- J = jac_linear()
- J_sparse = csc_matrix(J)
- for method, jac in product(['Radau', 'BDF'], [J, J_sparse]):
- res = solve_ivp(fun_linear, t_span, y0, rtol=rtol, atol=atol,
- method=method, dense_output=True, jac=jac)
- assert_equal(res.t[0], t_span[0])
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- assert_(res.nfev < 100)
- assert_equal(res.njev, 0)
- assert_(0 < res.nlu < 15)
- y_true = sol_linear(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 10))
- tc = np.linspace(*t_span)
- yc_true = sol_linear(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, rtol, atol)
- assert_(np.all(e < 15))
- assert_allclose(res.sol(res.t), res.y, rtol=1e-14, atol=1e-14)
- @pytest.mark.slow
- @pytest.mark.parametrize('method', ['Radau', 'BDF', 'LSODA'])
- def test_integration_stiff(method):
- rtol = 1e-6
- atol = 1e-6
- y0 = [1e4, 0, 0]
- tspan = [0, 1e8]
- def fun_robertson(t, state):
- x, y, z = state
- return [
- -0.04 * x + 1e4 * y * z,
- 0.04 * x - 1e4 * y * z - 3e7 * y * y,
- 3e7 * y * y,
- ]
- res = solve_ivp(fun_robertson, tspan, y0, rtol=rtol,
- atol=atol, method=method)
- # If the stiff mode is not activated correctly, these numbers will be much bigger
- assert res.nfev < 5000
- assert res.njev < 200
- def test_events():
- def event_rational_1(t, y):
- return y[0] - y[1] ** 0.7
- def event_rational_2(t, y):
- return y[1] ** 0.6 - y[0]
- def event_rational_3(t, y):
- return t - 7.4
- event_rational_3.terminal = True
- for method in ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA']:
- res = solve_ivp(fun_rational, [5, 8], [1/3, 2/9], method=method,
- events=(event_rational_1, event_rational_2))
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 1)
- assert_equal(res.t_events[1].size, 1)
- assert_(5.3 < res.t_events[0][0] < 5.7)
- assert_(7.3 < res.t_events[1][0] < 7.7)
- event_rational_1.direction = 1
- event_rational_2.direction = 1
- res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
- events=(event_rational_1, event_rational_2))
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 1)
- assert_equal(res.t_events[1].size, 0)
- assert_(5.3 < res.t_events[0][0] < 5.7)
- event_rational_1.direction = -1
- event_rational_2.direction = -1
- res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
- events=(event_rational_1, event_rational_2))
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 0)
- assert_equal(res.t_events[1].size, 1)
- assert_(7.3 < res.t_events[1][0] < 7.7)
- event_rational_1.direction = 0
- event_rational_2.direction = 0
- res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
- events=(event_rational_1, event_rational_2,
- event_rational_3), dense_output=True)
- assert_equal(res.status, 1)
- assert_equal(res.t_events[0].size, 1)
- assert_equal(res.t_events[1].size, 0)
- assert_equal(res.t_events[2].size, 1)
- assert_(5.3 < res.t_events[0][0] < 5.7)
- assert_(7.3 < res.t_events[2][0] < 7.5)
- res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
- events=event_rational_1, dense_output=True)
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 1)
- assert_(5.3 < res.t_events[0][0] < 5.7)
- # Also test that termination by event doesn't break interpolants.
- tc = np.linspace(res.t[0], res.t[-1])
- yc_true = sol_rational(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, 1e-3, 1e-6)
- assert_(np.all(e < 5))
- # Test in backward direction.
- event_rational_1.direction = 0
- event_rational_2.direction = 0
- for method in ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA']:
- res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
- events=(event_rational_1, event_rational_2))
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 1)
- assert_equal(res.t_events[1].size, 1)
- assert_(5.3 < res.t_events[0][0] < 5.7)
- assert_(7.3 < res.t_events[1][0] < 7.7)
- event_rational_1.direction = -1
- event_rational_2.direction = -1
- res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
- events=(event_rational_1, event_rational_2))
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 1)
- assert_equal(res.t_events[1].size, 0)
- assert_(5.3 < res.t_events[0][0] < 5.7)
- event_rational_1.direction = 1
- event_rational_2.direction = 1
- res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
- events=(event_rational_1, event_rational_2))
- assert_equal(res.status, 0)
- assert_equal(res.t_events[0].size, 0)
- assert_equal(res.t_events[1].size, 1)
- assert_(7.3 < res.t_events[1][0] < 7.7)
- event_rational_1.direction = 0
- event_rational_2.direction = 0
- res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
- events=(event_rational_1, event_rational_2,
- event_rational_3), dense_output=True)
- assert_equal(res.status, 1)
- assert_equal(res.t_events[0].size, 0)
- assert_equal(res.t_events[1].size, 1)
- assert_equal(res.t_events[2].size, 1)
- assert_(7.3 < res.t_events[1][0] < 7.7)
- assert_(7.3 < res.t_events[2][0] < 7.5)
- # Also test that termination by event doesn't break interpolants.
- tc = np.linspace(res.t[-1], res.t[0])
- yc_true = sol_rational(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, 1e-3, 1e-6)
- assert_(np.all(e < 5))
- def test_max_step():
- rtol = 1e-3
- atol = 1e-6
- y0 = [1/3, 2/9]
- for method in [RK23, RK45, Radau, BDF, LSODA]:
- for t_span in ([5, 9], [5, 1]):
- res = solve_ivp(fun_rational, t_span, y0, rtol=rtol,
- max_step=0.5, atol=atol, method=method,
- dense_output=True)
- assert_equal(res.t[0], t_span[0])
- assert_equal(res.t[-1], t_span[-1])
- assert_(np.all(np.abs(np.diff(res.t)) <= 0.5))
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- tc = np.linspace(*t_span)
- yc_true = sol_rational(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, rtol, atol)
- assert_(np.all(e < 5))
- # See comment in test_integration.
- if method is not LSODA:
- assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
- assert_raises(ValueError, method, fun_rational, t_span[0], y0,
- t_span[1], max_step=-1)
- if method is not LSODA:
- solver = method(fun_rational, t_span[0], y0, t_span[1],
- rtol=rtol, atol=atol, max_step=1e-20)
- message = solver.step()
- assert_equal(solver.status, 'failed')
- assert_("step size is less" in message)
- assert_raises(RuntimeError, solver.step)
- def test_first_step():
- rtol = 1e-3
- atol = 1e-6
- y0 = [1/3, 2/9]
- first_step = 0.1
- for method in [RK23, RK45, Radau, BDF, LSODA]:
- for t_span in ([5, 9], [5, 1]):
- res = solve_ivp(fun_rational, t_span, y0, rtol=rtol,
- max_step=0.5, atol=atol, method=method,
- dense_output=True, first_step=first_step)
- assert_equal(res.t[0], t_span[0])
- assert_equal(res.t[-1], t_span[-1])
- assert_allclose(first_step, np.abs(res.t[1] - 5))
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- tc = np.linspace(*t_span)
- yc_true = sol_rational(tc)
- yc = res.sol(tc)
- e = compute_error(yc, yc_true, rtol, atol)
- assert_(np.all(e < 5))
- # See comment in test_integration.
- if method is not LSODA:
- assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
- assert_raises(ValueError, method, fun_rational, t_span[0], y0,
- t_span[1], first_step=-1)
- assert_raises(ValueError, method, fun_rational, t_span[0], y0,
- t_span[1], first_step=5)
-
- def test_t_eval():
- rtol = 1e-3
- atol = 1e-6
- y0 = [1/3, 2/9]
- for t_span in ([5, 9], [5, 1]):
- t_eval = np.linspace(t_span[0], t_span[1], 10)
- res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
- t_eval=t_eval)
- assert_equal(res.t, t_eval)
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- t_eval = [5, 5.01, 7, 8, 8.01, 9]
- res = solve_ivp(fun_rational, [5, 9], y0, rtol=rtol, atol=atol,
- t_eval=t_eval)
- assert_equal(res.t, t_eval)
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- t_eval = [5, 4.99, 3, 1.5, 1.1, 1.01, 1]
- res = solve_ivp(fun_rational, [5, 1], y0, rtol=rtol, atol=atol,
- t_eval=t_eval)
- assert_equal(res.t, t_eval)
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- t_eval = [5.01, 7, 8, 8.01]
- res = solve_ivp(fun_rational, [5, 9], y0, rtol=rtol, atol=atol,
- t_eval=t_eval)
- assert_equal(res.t, t_eval)
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- t_eval = [4.99, 3, 1.5, 1.1, 1.01]
- res = solve_ivp(fun_rational, [5, 1], y0, rtol=rtol, atol=atol,
- t_eval=t_eval)
- assert_equal(res.t, t_eval)
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- t_eval = [4, 6]
- assert_raises(ValueError, solve_ivp, fun_rational, [5, 9], y0,
- rtol=rtol, atol=atol, t_eval=t_eval)
- def test_t_eval_dense_output():
- rtol = 1e-3
- atol = 1e-6
- y0 = [1/3, 2/9]
- t_span = [5, 9]
- t_eval = np.linspace(t_span[0], t_span[1], 10)
- res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
- t_eval=t_eval)
- res_d = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
- t_eval=t_eval, dense_output=True)
- assert_equal(res.t, t_eval)
- assert_(res.t_events is None)
- assert_(res.success)
- assert_equal(res.status, 0)
- assert_equal(res.t, res_d.t)
- assert_equal(res.y, res_d.y)
- assert_(res_d.t_events is None)
- assert_(res_d.success)
- assert_equal(res_d.status, 0)
- # if t and y are equal only test values for one case
- y_true = sol_rational(res.t)
- e = compute_error(res.y, y_true, rtol, atol)
- assert_(np.all(e < 5))
- def test_no_integration():
- for method in ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA']:
- sol = solve_ivp(lambda t, y: -y, [4, 4], [2, 3],
- method=method, dense_output=True)
- assert_equal(sol.sol(4), [2, 3])
- assert_equal(sol.sol([4, 5, 6]), [[2, 2, 2], [3, 3, 3]])
- def test_no_integration_class():
- for method in [RK23, RK45, Radau, BDF, LSODA]:
- solver = method(lambda t, y: -y, 0.0, [10.0, 0.0], 0.0)
- solver.step()
- assert_equal(solver.status, 'finished')
- sol = solver.dense_output()
- assert_equal(sol(0.0), [10.0, 0.0])
- assert_equal(sol([0, 1, 2]), [[10, 10, 10], [0, 0, 0]])
- solver = method(lambda t, y: -y, 0.0, [], np.inf)
- solver.step()
- assert_equal(solver.status, 'finished')
- sol = solver.dense_output()
- assert_equal(sol(100.0), [])
- assert_equal(sol([0, 1, 2]), np.empty((0, 3)))
- def test_empty():
- def fun(t, y):
- return np.zeros((0,))
- y0 = np.zeros((0,))
- for method in ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA']:
- sol = assert_no_warnings(solve_ivp, fun, [0, 10], y0,
- method=method, dense_output=True)
- assert_equal(sol.sol(10), np.zeros((0,)))
- assert_equal(sol.sol([1, 2, 3]), np.zeros((0, 3)))
- for method in ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA']:
- sol = assert_no_warnings(solve_ivp, fun, [0, np.inf], y0,
- method=method, dense_output=True)
- assert_equal(sol.sol(10), np.zeros((0,)))
- assert_equal(sol.sol([1, 2, 3]), np.zeros((0, 3)))
- def test_ConstantDenseOutput():
- sol = ConstantDenseOutput(0, 1, np.array([1, 2]))
- assert_allclose(sol(1.5), [1, 2])
- assert_allclose(sol([1, 1.5, 2]), [[1, 1, 1], [2, 2, 2]])
- sol = ConstantDenseOutput(0, 1, np.array([]))
- assert_allclose(sol(1.5), np.empty(0))
- assert_allclose(sol([1, 1.5, 2]), np.empty((0, 3)))
- def test_classes():
- y0 = [1 / 3, 2 / 9]
- for cls in [RK23, RK45, Radau, BDF, LSODA]:
- solver = cls(fun_rational, 5, y0, np.inf)
- assert_equal(solver.n, 2)
- assert_equal(solver.status, 'running')
- assert_equal(solver.t_bound, np.inf)
- assert_equal(solver.direction, 1)
- assert_equal(solver.t, 5)
- assert_equal(solver.y, y0)
- assert_(solver.step_size is None)
- if cls is not LSODA:
- assert_(solver.nfev > 0)
- assert_(solver.njev >= 0)
- assert_equal(solver.nlu, 0)
- else:
- assert_equal(solver.nfev, 0)
- assert_equal(solver.njev, 0)
- assert_equal(solver.nlu, 0)
- assert_raises(RuntimeError, solver.dense_output)
- message = solver.step()
- assert_equal(solver.status, 'running')
- assert_equal(message, None)
- assert_equal(solver.n, 2)
- assert_equal(solver.t_bound, np.inf)
- assert_equal(solver.direction, 1)
- assert_(solver.t > 5)
- assert_(not np.all(np.equal(solver.y, y0)))
- assert_(solver.step_size > 0)
- assert_(solver.nfev > 0)
- assert_(solver.njev >= 0)
- assert_(solver.nlu >= 0)
- sol = solver.dense_output()
- assert_allclose(sol(5), y0, rtol=1e-15, atol=0)
- def test_OdeSolution():
- ts = np.array([0, 2, 5], dtype=float)
- s1 = ConstantDenseOutput(ts[0], ts[1], np.array([-1]))
- s2 = ConstantDenseOutput(ts[1], ts[2], np.array([1]))
- sol = OdeSolution(ts, [s1, s2])
- assert_equal(sol(-1), [-1])
- assert_equal(sol(1), [-1])
- assert_equal(sol(2), [-1])
- assert_equal(sol(3), [1])
- assert_equal(sol(5), [1])
- assert_equal(sol(6), [1])
- assert_equal(sol([0, 6, -2, 1.5, 4.5, 2.5, 5, 5.5, 2]),
- np.array([[-1, 1, -1, -1, 1, 1, 1, 1, -1]]))
- ts = np.array([10, 4, -3])
- s1 = ConstantDenseOutput(ts[0], ts[1], np.array([-1]))
- s2 = ConstantDenseOutput(ts[1], ts[2], np.array([1]))
- sol = OdeSolution(ts, [s1, s2])
- assert_equal(sol(11), [-1])
- assert_equal(sol(10), [-1])
- assert_equal(sol(5), [-1])
- assert_equal(sol(4), [-1])
- assert_equal(sol(0), [1])
- assert_equal(sol(-3), [1])
- assert_equal(sol(-4), [1])
- assert_equal(sol([12, -5, 10, -3, 6, 1, 4]),
- np.array([[-1, 1, -1, 1, -1, 1, -1]]))
- ts = np.array([1, 1])
- s = ConstantDenseOutput(1, 1, np.array([10]))
- sol = OdeSolution(ts, [s])
- assert_equal(sol(0), [10])
- assert_equal(sol(1), [10])
- assert_equal(sol(2), [10])
- assert_equal(sol([2, 1, 0]), np.array([[10, 10, 10]]))
- def test_num_jac():
- def fun(t, y):
- return np.vstack([
- -0.04 * y[0] + 1e4 * y[1] * y[2],
- 0.04 * y[0] - 1e4 * y[1] * y[2] - 3e7 * y[1] ** 2,
- 3e7 * y[1] ** 2
- ])
- def jac(t, y):
- return np.array([
- [-0.04, 1e4 * y[2], 1e4 * y[1]],
- [0.04, -1e4 * y[2] - 6e7 * y[1], -1e4 * y[1]],
- [0, 6e7 * y[1], 0]
- ])
- t = 1
- y = np.array([1, 0, 0])
- J_true = jac(t, y)
- threshold = 1e-5
- f = fun(t, y).ravel()
- J_num, factor = num_jac(fun, t, y, f, threshold, None)
- assert_allclose(J_num, J_true, rtol=1e-5, atol=1e-5)
- J_num, factor = num_jac(fun, t, y, f, threshold, factor)
- assert_allclose(J_num, J_true, rtol=1e-5, atol=1e-5)
- def test_num_jac_sparse():
- def fun(t, y):
- e = y[1:]**3 - y[:-1]**2
- z = np.zeros(y.shape[1])
- return np.vstack((z, 3 * e)) + np.vstack((2 * e, z))
- def structure(n):
- A = np.zeros((n, n), dtype=int)
- A[0, 0] = 1
- A[0, 1] = 1
- for i in range(1, n - 1):
- A[i, i - 1: i + 2] = 1
- A[-1, -1] = 1
- A[-1, -2] = 1
- return A
- np.random.seed(0)
- n = 20
- y = np.random.randn(n)
- A = structure(n)
- groups = group_columns(A)
- f = fun(0, y[:, None]).ravel()
- # Compare dense and sparse results, assuming that dense implementation
- # is correct (as it is straightforward).
- J_num_sparse, factor_sparse = num_jac(fun, 0, y.ravel(), f, 1e-8, None,
- sparsity=(A, groups))
- J_num_dense, factor_dense = num_jac(fun, 0, y.ravel(), f, 1e-8, None)
- assert_allclose(J_num_dense, J_num_sparse.toarray(),
- rtol=1e-12, atol=1e-14)
- assert_allclose(factor_dense, factor_sparse, rtol=1e-12, atol=1e-14)
- # Take small factors to trigger their recomputing inside.
- factor = np.random.uniform(0, 1e-12, size=n)
- J_num_sparse, factor_sparse = num_jac(fun, 0, y.ravel(), f, 1e-8, factor,
- sparsity=(A, groups))
- J_num_dense, factor_dense = num_jac(fun, 0, y.ravel(), f, 1e-8, factor)
- assert_allclose(J_num_dense, J_num_sparse.toarray(),
- rtol=1e-12, atol=1e-14)
- assert_allclose(factor_dense, factor_sparse, rtol=1e-12, atol=1e-14)
|