123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716 |
- """
- fitpack --- curve and surface fitting with splines
- fitpack is based on a collection of Fortran routines DIERCKX
- by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
- to double routines by Pearu Peterson.
- """
- # Created by Pearu Peterson, June,August 2003
- from __future__ import division, print_function, absolute_import
- __all__ = [
- 'UnivariateSpline',
- 'InterpolatedUnivariateSpline',
- 'LSQUnivariateSpline',
- 'BivariateSpline',
- 'LSQBivariateSpline',
- 'SmoothBivariateSpline',
- 'LSQSphereBivariateSpline',
- 'SmoothSphereBivariateSpline',
- 'RectBivariateSpline',
- 'RectSphereBivariateSpline']
- import warnings
- from numpy import zeros, concatenate, alltrue, ravel, all, diff, array, ones
- import numpy as np
- from . import fitpack
- from . import dfitpack
- # ############### Univariate spline ####################
- _curfit_messages = {1: """
- The required storage space exceeds the available storage space, as
- specified by the parameter nest: nest too small. If nest is already
- large (say nest > m/2), it may also indicate that s is too small.
- The approximation returned is the weighted least-squares spline
- according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
- gives the corresponding weighted sum of squared residuals (fp>s).
- """,
- 2: """
- A theoretically impossible result was found during the iteration
- process for finding a smoothing spline with fp = s: s too small.
- There is an approximation returned but the corresponding weighted sum
- of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
- 3: """
- The maximal number of iterations maxit (set to 20 by the program)
- allowed for finding a smoothing spline with fp=s has been reached: s
- too small.
- There is an approximation returned but the corresponding weighted sum
- of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
- 10: """
- Error on entry, no approximation returned. The following conditions
- must hold:
- xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
- if iopt=-1:
- xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
- }
- # UnivariateSpline, ext parameter can be an int or a string
- _extrap_modes = {0: 0, 'extrapolate': 0,
- 1: 1, 'zeros': 1,
- 2: 2, 'raise': 2,
- 3: 3, 'const': 3}
- class UnivariateSpline(object):
- """
- One-dimensional smoothing spline fit to a given set of data points.
- Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s`
- specifies the number of knots by specifying a smoothing condition.
- Parameters
- ----------
- x : (N,) array_like
- 1-D array of independent input data. Must be increasing.
- y : (N,) array_like
- 1-D array of dependent input data, of the same length as `x`.
- w : (N,) array_like, optional
- Weights for spline fitting. Must be positive. If None (default),
- weights are all equal.
- bbox : (2,) array_like, optional
- 2-sequence specifying the boundary of the approximation interval. If
- None (default), ``bbox=[x[0], x[-1]]``.
- k : int, optional
- Degree of the smoothing spline. Must be <= 5.
- Default is k=3, a cubic spline.
- s : float or None, optional
- Positive smoothing factor used to choose the number of knots. Number
- of knots will be increased until the smoothing condition is satisfied::
- sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s
- If None (default), ``s = len(w)`` which should be a good value if
- ``1/w[i]`` is an estimate of the standard deviation of ``y[i]``.
- If 0, spline will interpolate through all data points.
- ext : int or str, optional
- Controls the extrapolation mode for elements
- not in the interval defined by the knot sequence.
- * if ext=0 or 'extrapolate', return the extrapolated value.
- * if ext=1 or 'zeros', return 0
- * if ext=2 or 'raise', raise a ValueError
- * if ext=3 of 'const', return the boundary value.
- The default value is 0.
- check_finite : bool, optional
- Whether to check that the input arrays contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination or non-sensical results) if the inputs
- do contain infinities or NaNs.
- Default is False.
- See Also
- --------
- InterpolatedUnivariateSpline : Subclass with smoothing forced to 0
- LSQUnivariateSpline : Subclass in which knots are user-selected instead of
- being set by smoothing condition
- splrep : An older, non object-oriented wrapping of FITPACK
- splev, sproot, splint, spalde
- BivariateSpline : A similar class for two-dimensional spline interpolation
- Notes
- -----
- The number of data points must be larger than the spline degree `k`.
- **NaN handling**: If the input arrays contain ``nan`` values, the result
- is not useful, since the underlying spline fitting routines cannot deal
- with ``nan`` . A workaround is to use zero weights for not-a-number
- data points:
- >>> from scipy.interpolate import UnivariateSpline
- >>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
- >>> w = np.isnan(y)
- >>> y[w] = 0.
- >>> spl = UnivariateSpline(x, y, w=~w)
- Notice the need to replace a ``nan`` by a numerical value (precise value
- does not matter as long as the corresponding weight is zero.)
- Examples
- --------
- >>> import matplotlib.pyplot as plt
- >>> from scipy.interpolate import UnivariateSpline
- >>> x = np.linspace(-3, 3, 50)
- >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
- >>> plt.plot(x, y, 'ro', ms=5)
- Use the default value for the smoothing parameter:
- >>> spl = UnivariateSpline(x, y)
- >>> xs = np.linspace(-3, 3, 1000)
- >>> plt.plot(xs, spl(xs), 'g', lw=3)
- Manually change the amount of smoothing:
- >>> spl.set_smoothing_factor(0.5)
- >>> plt.plot(xs, spl(xs), 'b', lw=3)
- >>> plt.show()
- """
- def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
- ext=0, check_finite=False):
- if check_finite:
- w_finite = np.isfinite(w).all() if w is not None else True
- if (not np.isfinite(x).all() or not np.isfinite(y).all() or
- not w_finite):
- raise ValueError("x and y array must not contain "
- "NaNs or infs.")
- if not all(diff(x) > 0.0):
- raise ValueError('x must be strictly increasing')
- # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
- try:
- self.ext = _extrap_modes[ext]
- except KeyError:
- raise ValueError("Unknown extrapolation mode %s." % ext)
- data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
- xe=bbox[1], s=s)
- if data[-1] == 1:
- # nest too small, setting to maximum bound
- data = self._reset_nest(data)
- self._data = data
- self._reset_class()
- @classmethod
- def _from_tck(cls, tck, ext=0):
- """Construct a spline object from given tck"""
- self = cls.__new__(cls)
- t, c, k = tck
- self._eval_args = tck
- # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
- self._data = (None, None, None, None, None, k, None, len(t), t,
- c, None, None, None, None)
- self.ext = ext
- return self
- def _reset_class(self):
- data = self._data
- n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
- self._eval_args = t[:n], c[:n], k
- if ier == 0:
- # the spline returned has a residual sum of squares fp
- # such that abs(fp-s)/s <= tol with tol a relative
- # tolerance set to 0.001 by the program
- pass
- elif ier == -1:
- # the spline returned is an interpolating spline
- self._set_class(InterpolatedUnivariateSpline)
- elif ier == -2:
- # the spline returned is the weighted least-squares
- # polynomial of degree k. In this extreme case fp gives
- # the upper bound fp0 for the smoothing factor s.
- self._set_class(LSQUnivariateSpline)
- else:
- # error
- if ier == 1:
- self._set_class(LSQUnivariateSpline)
- message = _curfit_messages.get(ier, 'ier=%s' % (ier))
- warnings.warn(message)
- def _set_class(self, cls):
- self._spline_class = cls
- if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
- LSQUnivariateSpline):
- self.__class__ = cls
- else:
- # It's an unknown subclass -- don't change class. cf. #731
- pass
- def _reset_nest(self, data, nest=None):
- n = data[10]
- if nest is None:
- k, m = data[5], len(data[0])
- nest = m+k+1 # this is the maximum bound for nest
- else:
- if not n <= nest:
- raise ValueError("`nest` can only be increased")
- t, c, fpint, nrdata = [np.resize(data[j], nest) for j in
- [8, 9, 11, 12]]
- args = data[:8] + (t, c, n, fpint, nrdata, data[13])
- data = dfitpack.fpcurf1(*args)
- return data
- def set_smoothing_factor(self, s):
- """ Continue spline computation with the given smoothing
- factor s and with the knots found at the last call.
- This routine modifies the spline in place.
- """
- data = self._data
- if data[6] == -1:
- warnings.warn('smoothing factor unchanged for'
- 'LSQ spline with fixed knots')
- return
- args = data[:6] + (s,) + data[7:]
- data = dfitpack.fpcurf1(*args)
- if data[-1] == 1:
- # nest too small, setting to maximum bound
- data = self._reset_nest(data)
- self._data = data
- self._reset_class()
- def __call__(self, x, nu=0, ext=None):
- """
- Evaluate spline (or its nu-th derivative) at positions x.
- Parameters
- ----------
- x : array_like
- A 1-D array of points at which to return the value of the smoothed
- spline or its derivatives. Note: x can be unordered but the
- evaluation is more efficient if x is (partially) ordered.
- nu : int
- The order of derivative of the spline to compute.
- ext : int
- Controls the value returned for elements of ``x`` not in the
- interval defined by the knot sequence.
- * if ext=0 or 'extrapolate', return the extrapolated value.
- * if ext=1 or 'zeros', return 0
- * if ext=2 or 'raise', raise a ValueError
- * if ext=3 or 'const', return the boundary value.
- The default value is 0, passed from the initialization of
- UnivariateSpline.
- """
- x = np.asarray(x)
- # empty input yields empty output
- if x.size == 0:
- return array([])
- # if nu is None:
- # return dfitpack.splev(*(self._eval_args+(x,)))
- # return dfitpack.splder(nu=nu,*(self._eval_args+(x,)))
- if ext is None:
- ext = self.ext
- else:
- try:
- ext = _extrap_modes[ext]
- except KeyError:
- raise ValueError("Unknown extrapolation mode %s." % ext)
- return fitpack.splev(x, self._eval_args, der=nu, ext=ext)
- def get_knots(self):
- """ Return positions of interior knots of the spline.
- Internally, the knot vector contains ``2*k`` additional boundary knots.
- """
- data = self._data
- k, n = data[5], data[7]
- return data[8][k:n-k]
- def get_coeffs(self):
- """Return spline coefficients."""
- data = self._data
- k, n = data[5], data[7]
- return data[9][:n-k-1]
- def get_residual(self):
- """Return weighted sum of squared residuals of the spline approximation.
- This is equivalent to::
- sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
- """
- return self._data[10]
- def integral(self, a, b):
- """ Return definite integral of the spline between two given points.
- Parameters
- ----------
- a : float
- Lower limit of integration.
- b : float
- Upper limit of integration.
- Returns
- -------
- integral : float
- The value of the definite integral of the spline between limits.
- Examples
- --------
- >>> from scipy.interpolate import UnivariateSpline
- >>> x = np.linspace(0, 3, 11)
- >>> y = x**2
- >>> spl = UnivariateSpline(x, y)
- >>> spl.integral(0, 3)
- 9.0
- which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
- of 0 and 3.
- A caveat is that this routine assumes the spline to be zero outside of
- the data limits:
- >>> spl.integral(-1, 4)
- 9.0
- >>> spl.integral(-1, 0)
- 0.0
- """
- return dfitpack.splint(*(self._eval_args+(a, b)))
- def derivatives(self, x):
- """ Return all derivatives of the spline at the point x.
- Parameters
- ----------
- x : float
- The point to evaluate the derivatives at.
- Returns
- -------
- der : ndarray, shape(k+1,)
- Derivatives of the orders 0 to k.
- Examples
- --------
- >>> from scipy.interpolate import UnivariateSpline
- >>> x = np.linspace(0, 3, 11)
- >>> y = x**2
- >>> spl = UnivariateSpline(x, y)
- >>> spl.derivatives(1.5)
- array([2.25, 3.0, 2.0, 0])
- """
- d, ier = dfitpack.spalde(*(self._eval_args+(x,)))
- if not ier == 0:
- raise ValueError("Error code returned by spalde: %s" % ier)
- return d
- def roots(self):
- """ Return the zeros of the spline.
- Restriction: only cubic splines are supported by fitpack.
- """
- k = self._data[5]
- if k == 3:
- z, m, ier = dfitpack.sproot(*self._eval_args[:2])
- if not ier == 0:
- raise ValueError("Error code returned by spalde: %s" % ier)
- return z[:m]
- raise NotImplementedError('finding roots unsupported for '
- 'non-cubic splines')
- def derivative(self, n=1):
- """
- Construct a new spline representing the derivative of this spline.
- Parameters
- ----------
- n : int, optional
- Order of derivative to evaluate. Default: 1
- Returns
- -------
- spline : UnivariateSpline
- Spline of order k2=k-n representing the derivative of this
- spline.
- See Also
- --------
- splder, antiderivative
- Notes
- -----
- .. versionadded:: 0.13.0
- Examples
- --------
- This can be used for finding maxima of a curve:
- >>> from scipy.interpolate import UnivariateSpline
- >>> x = np.linspace(0, 10, 70)
- >>> y = np.sin(x)
- >>> spl = UnivariateSpline(x, y, k=4, s=0)
- Now, differentiate the spline and find the zeros of the
- derivative. (NB: `sproot` only works for order 3 splines, so we
- fit an order 4 spline):
- >>> spl.derivative().roots() / np.pi
- array([ 0.50000001, 1.5 , 2.49999998])
- This agrees well with roots :math:`\\pi/2 + n\\pi` of
- :math:`\\cos(x) = \\sin'(x)`.
- """
- tck = fitpack.splder(self._eval_args, n)
- return UnivariateSpline._from_tck(tck, self.ext)
- def antiderivative(self, n=1):
- """
- Construct a new spline representing the antiderivative of this spline.
- Parameters
- ----------
- n : int, optional
- Order of antiderivative to evaluate. Default: 1
- Returns
- -------
- spline : UnivariateSpline
- Spline of order k2=k+n representing the antiderivative of this
- spline.
- Notes
- -----
- .. versionadded:: 0.13.0
- See Also
- --------
- splantider, derivative
- Examples
- --------
- >>> from scipy.interpolate import UnivariateSpline
- >>> x = np.linspace(0, np.pi/2, 70)
- >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
- >>> spl = UnivariateSpline(x, y, s=0)
- The derivative is the inverse operation of the antiderivative,
- although some floating point error accumulates:
- >>> spl(1.7), spl.antiderivative().derivative()(1.7)
- (array(2.1565429877197317), array(2.1565429877201865))
- Antiderivative can be used to evaluate definite integrals:
- >>> ispl = spl.antiderivative()
- >>> ispl(np.pi/2) - ispl(0)
- 2.2572053588768486
- This is indeed an approximation to the complete elliptic integral
- :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
- >>> from scipy.special import ellipk
- >>> ellipk(0.8)
- 2.2572053268208538
- """
- tck = fitpack.splantider(self._eval_args, n)
- return UnivariateSpline._from_tck(tck, self.ext)
- class InterpolatedUnivariateSpline(UnivariateSpline):
- """
- One-dimensional interpolating spline for a given set of data points.
- Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
- Spline function passes through all provided points. Equivalent to
- `UnivariateSpline` with s=0.
- Parameters
- ----------
- x : (N,) array_like
- Input dimension of data points -- must be increasing
- y : (N,) array_like
- input dimension of data points
- w : (N,) array_like, optional
- Weights for spline fitting. Must be positive. If None (default),
- weights are all equal.
- bbox : (2,) array_like, optional
- 2-sequence specifying the boundary of the approximation interval. If
- None (default), ``bbox=[x[0], x[-1]]``.
- k : int, optional
- Degree of the smoothing spline. Must be 1 <= `k` <= 5.
- ext : int or str, optional
- Controls the extrapolation mode for elements
- not in the interval defined by the knot sequence.
- * if ext=0 or 'extrapolate', return the extrapolated value.
- * if ext=1 or 'zeros', return 0
- * if ext=2 or 'raise', raise a ValueError
- * if ext=3 of 'const', return the boundary value.
- The default value is 0.
- check_finite : bool, optional
- Whether to check that the input arrays contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination or non-sensical results) if the inputs
- do contain infinities or NaNs.
- Default is False.
- See Also
- --------
- UnivariateSpline : Superclass -- allows knots to be selected by a
- smoothing condition
- LSQUnivariateSpline : spline for which knots are user-selected
- splrep : An older, non object-oriented wrapping of FITPACK
- splev, sproot, splint, spalde
- BivariateSpline : A similar class for two-dimensional spline interpolation
- Notes
- -----
- The number of data points must be larger than the spline degree `k`.
- Examples
- --------
- >>> import matplotlib.pyplot as plt
- >>> from scipy.interpolate import InterpolatedUnivariateSpline
- >>> x = np.linspace(-3, 3, 50)
- >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
- >>> spl = InterpolatedUnivariateSpline(x, y)
- >>> plt.plot(x, y, 'ro', ms=5)
- >>> xs = np.linspace(-3, 3, 1000)
- >>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
- >>> plt.show()
- Notice that the ``spl(x)`` interpolates `y`:
- >>> spl.get_residual()
- 0.0
- """
- def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
- ext=0, check_finite=False):
- if check_finite:
- w_finite = np.isfinite(w).all() if w is not None else True
- if (not np.isfinite(x).all() or not np.isfinite(y).all() or
- not w_finite):
- raise ValueError("Input must not contain NaNs or infs.")
- if not all(diff(x) > 0.0):
- raise ValueError('x must be strictly increasing')
- # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
- self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
- xe=bbox[1], s=0)
- self._reset_class()
- try:
- self.ext = _extrap_modes[ext]
- except KeyError:
- raise ValueError("Unknown extrapolation mode %s." % ext)
- _fpchec_error_string = """The input parameters have been rejected by fpchec. \
- This means that at least one of the following conditions is violated:
- 1) k+1 <= n-k-1 <= m
- 2) t(1) <= t(2) <= ... <= t(k+1)
- t(n-k) <= t(n-k+1) <= ... <= t(n)
- 3) t(k+1) < t(k+2) < ... < t(n-k)
- 4) t(k+1) <= x(i) <= t(n-k)
- 5) The conditions specified by Schoenberg and Whitney must hold
- for at least one subset of data points, i.e., there must be a
- subset of data points y(j) such that
- t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
- """
- class LSQUnivariateSpline(UnivariateSpline):
- """
- One-dimensional spline with explicit internal knots.
- Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
- specifies the internal knots of the spline
- Parameters
- ----------
- x : (N,) array_like
- Input dimension of data points -- must be increasing
- y : (N,) array_like
- Input dimension of data points
- t : (M,) array_like
- interior knots of the spline. Must be in ascending order and::
- bbox[0] < t[0] < ... < t[-1] < bbox[-1]
- w : (N,) array_like, optional
- weights for spline fitting. Must be positive. If None (default),
- weights are all equal.
- bbox : (2,) array_like, optional
- 2-sequence specifying the boundary of the approximation interval. If
- None (default), ``bbox = [x[0], x[-1]]``.
- k : int, optional
- Degree of the smoothing spline. Must be 1 <= `k` <= 5.
- Default is k=3, a cubic spline.
- ext : int or str, optional
- Controls the extrapolation mode for elements
- not in the interval defined by the knot sequence.
- * if ext=0 or 'extrapolate', return the extrapolated value.
- * if ext=1 or 'zeros', return 0
- * if ext=2 or 'raise', raise a ValueError
- * if ext=3 of 'const', return the boundary value.
- The default value is 0.
- check_finite : bool, optional
- Whether to check that the input arrays contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination or non-sensical results) if the inputs
- do contain infinities or NaNs.
- Default is False.
- Raises
- ------
- ValueError
- If the interior knots do not satisfy the Schoenberg-Whitney conditions
- See Also
- --------
- UnivariateSpline : Superclass -- knots are specified by setting a
- smoothing condition
- InterpolatedUnivariateSpline : spline passing through all points
- splrep : An older, non object-oriented wrapping of FITPACK
- splev, sproot, splint, spalde
- BivariateSpline : A similar class for two-dimensional spline interpolation
- Notes
- -----
- The number of data points must be larger than the spline degree `k`.
- Knots `t` must satisfy the Schoenberg-Whitney conditions,
- i.e., there must be a subset of data points ``x[j]`` such that
- ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
- Examples
- --------
- >>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
- >>> import matplotlib.pyplot as plt
- >>> x = np.linspace(-3, 3, 50)
- >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
- Fit a smoothing spline with a pre-defined internal knots:
- >>> t = [-1, 0, 1]
- >>> spl = LSQUnivariateSpline(x, y, t)
- >>> xs = np.linspace(-3, 3, 1000)
- >>> plt.plot(x, y, 'ro', ms=5)
- >>> plt.plot(xs, spl(xs), 'g-', lw=3)
- >>> plt.show()
- Check the knot vector:
- >>> spl.get_knots()
- array([-3., -1., 0., 1., 3.])
- Constructing lsq spline using the knots from another spline:
- >>> x = np.arange(10)
- >>> s = UnivariateSpline(x, x, s=0)
- >>> s.get_knots()
- array([ 0., 2., 3., 4., 5., 6., 7., 9.])
- >>> knt = s.get_knots()
- >>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
- >>> s1.get_knots()
- array([ 0., 2., 3., 4., 5., 6., 7., 9.])
- """
- def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
- ext=0, check_finite=False):
- if check_finite:
- w_finite = np.isfinite(w).all() if w is not None else True
- if (not np.isfinite(x).all() or not np.isfinite(y).all() or
- not w_finite or not np.isfinite(t).all()):
- raise ValueError("Input(s) must not contain NaNs or infs.")
- if not all(diff(x) > 0.0):
- raise ValueError('x must be strictly increasing')
- # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
- xb = bbox[0]
- xe = bbox[1]
- if xb is None:
- xb = x[0]
- if xe is None:
- xe = x[-1]
- t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
- n = len(t)
- if not alltrue(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
- raise ValueError('Interior knots t must satisfy '
- 'Schoenberg-Whitney conditions')
- if not dfitpack.fpchec(x, t, k) == 0:
- raise ValueError(_fpchec_error_string)
- data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
- self._data = data[:-3] + (None, None, data[-1])
- self._reset_class()
- try:
- self.ext = _extrap_modes[ext]
- except KeyError:
- raise ValueError("Unknown extrapolation mode %s." % ext)
- # ############### Bivariate spline ####################
- class _BivariateSplineBase(object):
- """ Base class for Bivariate spline s(x,y) interpolation on the rectangle
- [xb,xe] x [yb, ye] calculated from a given set of data points
- (x,y,z).
- See Also
- --------
- bisplrep, bisplev : an older wrapping of FITPACK
- BivariateSpline :
- implementation of bivariate spline interpolation on a plane grid
- SphereBivariateSpline :
- implementation of bivariate spline interpolation on a spherical grid
- """
- def get_residual(self):
- """ Return weighted sum of squared residuals of the spline
- approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
- """
- return self.fp
- def get_knots(self):
- """ Return a tuple (tx,ty) where tx,ty contain knots positions
- of the spline with respect to x-, y-variable, respectively.
- The position of interior and additional knots are given as
- t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
- """
- return self.tck[:2]
- def get_coeffs(self):
- """ Return spline coefficients."""
- return self.tck[2]
- def __call__(self, x, y, dx=0, dy=0, grid=True):
- """
- Evaluate the spline or its derivatives at given positions.
- Parameters
- ----------
- x, y : array_like
- Input coordinates.
- If `grid` is False, evaluate the spline at points ``(x[i],
- y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting
- is obeyed.
- If `grid` is True: evaluate spline at the grid points
- defined by the coordinate arrays x, y. The arrays must be
- sorted to increasing order.
- Note that the axis ordering is inverted relative to
- the output of meshgrid.
- dx : int
- Order of x-derivative
- .. versionadded:: 0.14.0
- dy : int
- Order of y-derivative
- .. versionadded:: 0.14.0
- grid : bool
- Whether to evaluate the results on a grid spanned by the
- input arrays, or at points specified by the input arrays.
- .. versionadded:: 0.14.0
- """
- x = np.asarray(x)
- y = np.asarray(y)
- tx, ty, c = self.tck[:3]
- kx, ky = self.degrees
- if grid:
- if x.size == 0 or y.size == 0:
- return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)
- if dx or dy:
- z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
- if not ier == 0:
- raise ValueError("Error code returned by parder: %s" % ier)
- else:
- z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
- if not ier == 0:
- raise ValueError("Error code returned by bispev: %s" % ier)
- else:
- # standard Numpy broadcasting
- if x.shape != y.shape:
- x, y = np.broadcast_arrays(x, y)
- shape = x.shape
- x = x.ravel()
- y = y.ravel()
- if x.size == 0 or y.size == 0:
- return np.zeros(shape, dtype=self.tck[2].dtype)
- if dx or dy:
- z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
- if not ier == 0:
- raise ValueError("Error code returned by pardeu: %s" % ier)
- else:
- z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
- if not ier == 0:
- raise ValueError("Error code returned by bispeu: %s" % ier)
- z = z.reshape(shape)
- return z
- _surfit_messages = {1: """
- The required storage space exceeds the available storage space: nxest
- or nyest too small, or s too small.
- The weighted least-squares spline corresponds to the current set of
- knots.""",
- 2: """
- A theoretically impossible result was found during the iteration
- process for finding a smoothing spline with fp = s: s too small or
- badly chosen eps.
- Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
- 3: """
- the maximal number of iterations maxit (set to 20 by the program)
- allowed for finding a smoothing spline with fp=s has been reached:
- s too small.
- Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
- 4: """
- No more knots can be added because the number of b-spline coefficients
- (nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
- either s or m too small.
- The weighted least-squares spline corresponds to the current set of
- knots.""",
- 5: """
- No more knots can be added because the additional knot would (quasi)
- coincide with an old one: s too small or too large a weight to an
- inaccurate data point.
- The weighted least-squares spline corresponds to the current set of
- knots.""",
- 10: """
- Error on entry, no approximation returned. The following conditions
- must hold:
- xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
- If iopt==-1, then
- xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
- yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
- -3: """
- The coefficients of the spline returned have been computed as the
- minimal norm least-squares solution of a (numerically) rank deficient
- system (deficiency=%i). If deficiency is large, the results may be
- inaccurate. Deficiency may strongly depend on the value of eps."""
- }
- class BivariateSpline(_BivariateSplineBase):
- """
- Base class for bivariate splines.
- This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
- the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
- of data points ``(x, y, z)``.
- This class is meant to be subclassed, not instantiated directly.
- To construct these splines, call either `SmoothBivariateSpline` or
- `LSQBivariateSpline`.
- See Also
- --------
- UnivariateSpline : a similar class for univariate spline interpolation
- SmoothBivariateSpline :
- to create a BivariateSpline through the given points
- LSQBivariateSpline :
- to create a BivariateSpline using weighted least-squares fitting
- SphereBivariateSpline :
- bivariate spline interpolation in spherical cooridinates
- bisplrep : older wrapping of FITPACK
- bisplev : older wrapping of FITPACK
- """
- @classmethod
- def _from_tck(cls, tck):
- """Construct a spline object from given tck and degree"""
- self = cls.__new__(cls)
- if len(tck) != 5:
- raise ValueError("tck should be a 5 element tuple of tx,"
- " ty, c, kx, ky")
- self.tck = tck[:3]
- self.degrees = tck[3:]
- return self
- def ev(self, xi, yi, dx=0, dy=0):
- """
- Evaluate the spline at points
- Returns the interpolated value at ``(xi[i], yi[i]),
- i=0,...,len(xi)-1``.
- Parameters
- ----------
- xi, yi : array_like
- Input coordinates. Standard Numpy broadcasting is obeyed.
- dx : int, optional
- Order of x-derivative
- .. versionadded:: 0.14.0
- dy : int, optional
- Order of y-derivative
- .. versionadded:: 0.14.0
- """
- return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)
- def integral(self, xa, xb, ya, yb):
- """
- Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
- Parameters
- ----------
- xa, xb : float
- The end-points of the x integration interval.
- ya, yb : float
- The end-points of the y integration interval.
- Returns
- -------
- integ : float
- The value of the resulting integral.
- """
- tx, ty, c = self.tck[:3]
- kx, ky = self.degrees
- return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
- class SmoothBivariateSpline(BivariateSpline):
- """
- Smooth bivariate spline approximation.
- Parameters
- ----------
- x, y, z : array_like
- 1-D sequences of data points (order is not important).
- w : array_like, optional
- Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
- bbox : array_like, optional
- Sequence of length 4 specifying the boundary of the rectangular
- approximation domain. By default,
- ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
- kx, ky : ints, optional
- Degrees of the bivariate spline. Default is 3.
- s : float, optional
- Positive smoothing factor defined for estimation condition:
- ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
- Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
- estimate of the standard deviation of ``z[i]``.
- eps : float, optional
- A threshold for determining the effective rank of an over-determined
- linear system of equations. `eps` should have a value between 0 and 1,
- the default is 1e-16.
- See Also
- --------
- bisplrep : an older wrapping of FITPACK
- bisplev : an older wrapping of FITPACK
- UnivariateSpline : a similar class for univariate spline interpolation
- LSQUnivariateSpline : to create a BivariateSpline using weighted
- Notes
- -----
- The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
- """
- def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
- eps=None):
- xb, xe, yb, ye = bbox
- nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
- xb, xe, yb,
- ye, kx, ky,
- s=s, eps=eps,
- lwrk2=1)
- if ier > 10: # lwrk2 was to small, re-run
- nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
- xb, xe, yb,
- ye, kx, ky,
- s=s,
- eps=eps,
- lwrk2=ier)
- if ier in [0, -1, -2]: # normal return
- pass
- else:
- message = _surfit_messages.get(ier, 'ier=%s' % (ier))
- warnings.warn(message)
- self.fp = fp
- self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
- self.degrees = kx, ky
- class LSQBivariateSpline(BivariateSpline):
- """
- Weighted least-squares bivariate spline approximation.
- Parameters
- ----------
- x, y, z : array_like
- 1-D sequences of data points (order is not important).
- tx, ty : array_like
- Strictly ordered 1-D sequences of knots coordinates.
- w : array_like, optional
- Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
- bbox : (4,) array_like, optional
- Sequence of length 4 specifying the boundary of the rectangular
- approximation domain. By default,
- ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
- kx, ky : ints, optional
- Degrees of the bivariate spline. Default is 3.
- eps : float, optional
- A threshold for determining the effective rank of an over-determined
- linear system of equations. `eps` should have a value between 0 and 1,
- the default is 1e-16.
- See Also
- --------
- bisplrep : an older wrapping of FITPACK
- bisplev : an older wrapping of FITPACK
- UnivariateSpline : a similar class for univariate spline interpolation
- SmoothBivariateSpline : create a smoothing BivariateSpline
- Notes
- -----
- The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
- """
- def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
- eps=None):
- nx = 2*kx+2+len(tx)
- ny = 2*ky+2+len(ty)
- tx1 = zeros((nx,), float)
- ty1 = zeros((ny,), float)
- tx1[kx+1:nx-kx-1] = tx
- ty1[ky+1:ny-ky-1] = ty
- xb, xe, yb, ye = bbox
- tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, tx1, ty1, w,
- xb, xe, yb, ye,
- kx, ky, eps, lwrk2=1)
- if ier > 10:
- tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, tx1, ty1, w,
- xb, xe, yb, ye,
- kx, ky, eps, lwrk2=ier)
- if ier in [0, -1, -2]: # normal return
- pass
- else:
- if ier < -2:
- deficiency = (nx-kx-1)*(ny-ky-1)+ier
- message = _surfit_messages.get(-3) % (deficiency)
- else:
- message = _surfit_messages.get(ier, 'ier=%s' % (ier))
- warnings.warn(message)
- self.fp = fp
- self.tck = tx1, ty1, c
- self.degrees = kx, ky
- class RectBivariateSpline(BivariateSpline):
- """
- Bivariate spline approximation over a rectangular mesh.
- Can be used for both smoothing and interpolating data.
- Parameters
- ----------
- x,y : array_like
- 1-D arrays of coordinates in strictly ascending order.
- z : array_like
- 2-D array of data with shape (x.size,y.size).
- bbox : array_like, optional
- Sequence of length 4 specifying the boundary of the rectangular
- approximation domain. By default,
- ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
- kx, ky : ints, optional
- Degrees of the bivariate spline. Default is 3.
- s : float, optional
- Positive smoothing factor defined for estimation condition:
- ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
- Default is ``s=0``, which is for interpolation.
- See Also
- --------
- SmoothBivariateSpline : a smoothing bivariate spline for scattered data
- bisplrep : an older wrapping of FITPACK
- bisplev : an older wrapping of FITPACK
- UnivariateSpline : a similar class for univariate spline interpolation
- """
- def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
- x, y = ravel(x), ravel(y)
- if not all(diff(x) > 0.0):
- raise ValueError('x must be strictly increasing')
- if not all(diff(y) > 0.0):
- raise ValueError('y must be strictly increasing')
- if not ((x.min() == x[0]) and (x.max() == x[-1])):
- raise ValueError('x must be strictly ascending')
- if not ((y.min() == y[0]) and (y.max() == y[-1])):
- raise ValueError('y must be strictly ascending')
- if not x.size == z.shape[0]:
- raise ValueError('x dimension of z must have same number of '
- 'elements as x')
- if not y.size == z.shape[1]:
- raise ValueError('y dimension of z must have same number of '
- 'elements as y')
- z = ravel(z)
- xb, xe, yb, ye = bbox
- nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
- ye, kx, ky, s)
- if ier not in [0, -1, -2]:
- msg = _surfit_messages.get(ier, 'ier=%s' % (ier))
- raise ValueError(msg)
- self.fp = fp
- self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
- self.degrees = kx, ky
- _spherefit_messages = _surfit_messages.copy()
- _spherefit_messages[10] = """
- ERROR. On entry, the input data are controlled on validity. The following
- restrictions must be satisfied:
- -1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1,
- 0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
- lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
- kwrk >= m+(ntest-7)*(npest-7)
- if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
- 0<tt(5)<tt(6)<...<tt(nt-4)<pi
- 0<tp(5)<tp(6)<...<tp(np-4)<2*pi
- if iopt>=0: s>=0
- if one of these conditions is found to be violated,control
- is immediately repassed to the calling program. in that
- case there is no approximation returned."""
- _spherefit_messages[-3] = """
- WARNING. The coefficients of the spline returned have been computed as the
- minimal norm least-squares solution of a (numerically) rank
- deficient system (deficiency=%i, rank=%i). Especially if the rank
- deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
- the results may be inaccurate. They could also seriously depend on
- the value of eps."""
- class SphereBivariateSpline(_BivariateSplineBase):
- """
- Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
- given set of data points (theta,phi,r).
- .. versionadded:: 0.11.0
- See Also
- --------
- bisplrep, bisplev : an older wrapping of FITPACK
- UnivariateSpline : a similar class for univariate spline interpolation
- SmoothUnivariateSpline :
- to create a BivariateSpline through the given points
- LSQUnivariateSpline :
- to create a BivariateSpline using weighted least-squares fitting
- """
- def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
- """
- Evaluate the spline or its derivatives at given positions.
- Parameters
- ----------
- theta, phi : array_like
- Input coordinates.
- If `grid` is False, evaluate the spline at points
- ``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard
- Numpy broadcasting is obeyed.
- If `grid` is True: evaluate spline at the grid points
- defined by the coordinate arrays theta, phi. The arrays
- must be sorted to increasing order.
- dtheta : int, optional
- Order of theta-derivative
- .. versionadded:: 0.14.0
- dphi : int
- Order of phi-derivative
- .. versionadded:: 0.14.0
- grid : bool
- Whether to evaluate the results on a grid spanned by the
- input arrays, or at points specified by the input arrays.
- .. versionadded:: 0.14.0
- """
- theta = np.asarray(theta)
- phi = np.asarray(phi)
- if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
- raise ValueError("requested theta out of bounds.")
- if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
- raise ValueError("requested phi out of bounds.")
- return _BivariateSplineBase.__call__(self, theta, phi,
- dx=dtheta, dy=dphi, grid=grid)
- def ev(self, theta, phi, dtheta=0, dphi=0):
- """
- Evaluate the spline at points
- Returns the interpolated value at ``(theta[i], phi[i]),
- i=0,...,len(theta)-1``.
- Parameters
- ----------
- theta, phi : array_like
- Input coordinates. Standard Numpy broadcasting is obeyed.
- dtheta : int, optional
- Order of theta-derivative
- .. versionadded:: 0.14.0
- dphi : int, optional
- Order of phi-derivative
- .. versionadded:: 0.14.0
- """
- return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)
- class SmoothSphereBivariateSpline(SphereBivariateSpline):
- """
- Smooth bivariate spline approximation in spherical coordinates.
- .. versionadded:: 0.11.0
- Parameters
- ----------
- theta, phi, r : array_like
- 1-D sequences of data points (order is not important). Coordinates
- must be given in radians. Theta must lie within the interval (0, pi),
- and phi must lie within the interval (0, 2pi).
- w : array_like, optional
- Positive 1-D sequence of weights.
- s : float, optional
- Positive smoothing factor defined for estimation condition:
- ``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
- Default ``s=len(w)`` which should be a good value if 1/w[i] is an
- estimate of the standard deviation of r[i].
- eps : float, optional
- A threshold for determining the effective rank of an over-determined
- linear system of equations. `eps` should have a value between 0 and 1,
- the default is 1e-16.
- Notes
- -----
- For more information, see the FITPACK_ site about this function.
- .. _FITPACK: http://www.netlib.org/dierckx/sphere.f
- Examples
- --------
- Suppose we have global data on a coarse grid (the input data does not
- have to be on a grid):
- >>> theta = np.linspace(0., np.pi, 7)
- >>> phi = np.linspace(0., 2*np.pi, 9)
- >>> data = np.empty((theta.shape[0], phi.shape[0]))
- >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
- >>> data[1:-1,1], data[1:-1,-1] = 1., 1.
- >>> data[1,1:-1], data[-2,1:-1] = 1., 1.
- >>> data[2:-2,2], data[2:-2,-2] = 2., 2.
- >>> data[2,2:-2], data[-3,2:-2] = 2., 2.
- >>> data[3,3:-2] = 3.
- >>> data = np.roll(data, 4, 1)
- We need to set up the interpolator object
- >>> lats, lons = np.meshgrid(theta, phi)
- >>> from scipy.interpolate import SmoothSphereBivariateSpline
- >>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
- ... data.T.ravel(), s=3.5)
- As a first test, we'll see what the algorithm returns when run on the
- input coordinates
- >>> data_orig = lut(theta, phi)
- Finally we interpolate the data to a finer grid
- >>> fine_lats = np.linspace(0., np.pi, 70)
- >>> fine_lons = np.linspace(0., 2 * np.pi, 90)
- >>> data_smth = lut(fine_lats, fine_lons)
- >>> import matplotlib.pyplot as plt
- >>> fig = plt.figure()
- >>> ax1 = fig.add_subplot(131)
- >>> ax1.imshow(data, interpolation='nearest')
- >>> ax2 = fig.add_subplot(132)
- >>> ax2.imshow(data_orig, interpolation='nearest')
- >>> ax3 = fig.add_subplot(133)
- >>> ax3.imshow(data_smth, interpolation='nearest')
- >>> plt.show()
- """
- def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):
- if np.issubclass_(w, float):
- w = ones(len(theta)) * w
- nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
- r, w=w, s=s,
- eps=eps)
- if ier not in [0, -1, -2]:
- message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
- raise ValueError(message)
- self.fp = fp
- self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
- self.degrees = (3, 3)
- class LSQSphereBivariateSpline(SphereBivariateSpline):
- """
- Weighted least-squares bivariate spline approximation in spherical
- coordinates.
- .. versionadded:: 0.11.0
- Parameters
- ----------
- theta, phi, r : array_like
- 1-D sequences of data points (order is not important). Coordinates
- must be given in radians. Theta must lie within the interval (0, pi),
- and phi must lie within the interval (0, 2pi).
- tt, tp : array_like
- Strictly ordered 1-D sequences of knots coordinates.
- Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
- w : array_like, optional
- Positive 1-D sequence of weights, of the same length as `theta`, `phi`
- and `r`.
- eps : float, optional
- A threshold for determining the effective rank of an over-determined
- linear system of equations. `eps` should have a value between 0 and 1,
- the default is 1e-16.
- Notes
- -----
- For more information, see the FITPACK_ site about this function.
- .. _FITPACK: http://www.netlib.org/dierckx/sphere.f
- Examples
- --------
- Suppose we have global data on a coarse grid (the input data does not
- have to be on a grid):
- >>> theta = np.linspace(0., np.pi, 7)
- >>> phi = np.linspace(0., 2*np.pi, 9)
- >>> data = np.empty((theta.shape[0], phi.shape[0]))
- >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
- >>> data[1:-1,1], data[1:-1,-1] = 1., 1.
- >>> data[1,1:-1], data[-2,1:-1] = 1., 1.
- >>> data[2:-2,2], data[2:-2,-2] = 2., 2.
- >>> data[2,2:-2], data[-3,2:-2] = 2., 2.
- >>> data[3,3:-2] = 3.
- >>> data = np.roll(data, 4, 1)
- We need to set up the interpolator object. Here, we must also specify the
- coordinates of the knots to use.
- >>> lats, lons = np.meshgrid(theta, phi)
- >>> knotst, knotsp = theta.copy(), phi.copy()
- >>> knotst[0] += .0001
- >>> knotst[-1] -= .0001
- >>> knotsp[0] += .0001
- >>> knotsp[-1] -= .0001
- >>> from scipy.interpolate import LSQSphereBivariateSpline
- >>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
- ... data.T.ravel(), knotst, knotsp)
- As a first test, we'll see what the algorithm returns when run on the
- input coordinates
- >>> data_orig = lut(theta, phi)
- Finally we interpolate the data to a finer grid
- >>> fine_lats = np.linspace(0., np.pi, 70)
- >>> fine_lons = np.linspace(0., 2*np.pi, 90)
- >>> data_lsq = lut(fine_lats, fine_lons)
- >>> import matplotlib.pyplot as plt
- >>> fig = plt.figure()
- >>> ax1 = fig.add_subplot(131)
- >>> ax1.imshow(data, interpolation='nearest')
- >>> ax2 = fig.add_subplot(132)
- >>> ax2.imshow(data_orig, interpolation='nearest')
- >>> ax3 = fig.add_subplot(133)
- >>> ax3.imshow(data_lsq, interpolation='nearest')
- >>> plt.show()
- """
- def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):
- if np.issubclass_(w, float):
- w = ones(len(theta)) * w
- nt_, np_ = 8 + len(tt), 8 + len(tp)
- tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
- tt_[4:-4], tp_[4:-4] = tt, tp
- tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
- tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
- w=w, eps=eps)
- if ier < -2:
- deficiency = 6 + (nt_ - 8) * (np_ - 7) + ier
- message = _spherefit_messages.get(-3) % (deficiency, -ier)
- warnings.warn(message, stacklevel=3)
- elif ier not in [0, -1, -2]:
- message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
- raise ValueError(message)
- self.fp = fp
- self.tck = tt_, tp_, c
- self.degrees = (3, 3)
- _spfit_messages = _surfit_messages.copy()
- _spfit_messages[10] = """
- ERROR: on entry, the input data are controlled on validity
- the following restrictions must be satisfied.
- -1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
- -1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
- -1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
- mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
- kwrk>=5+mu+mv+nuest+nvest,
- lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
- 0< u(i-1)<u(i)< pi,i=2,..,mu,
- -pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
- if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
- 0<tu(5)<tu(6)<...<tu(nu-4)< pi
- 8<=nv<=min(nvest,mv+7)
- v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
- the schoenberg-whitney conditions, i.e. there must be
- subset of grid co-ordinates uu(p) and vv(q) such that
- tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
- (iopt(2)=1 and iopt(3)=1 also count for a uu-value
- tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
- (vv(q) is either a value v(j) or v(j)+2*pi)
- if iopt(1)>=0: s>=0
- if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
- if one of these conditions is found to be violated,control is
- immediately repassed to the calling program. in that case there is no
- approximation returned."""
- class RectSphereBivariateSpline(SphereBivariateSpline):
- """
- Bivariate spline approximation over a rectangular mesh on a sphere.
- Can be used for smoothing data.
- .. versionadded:: 0.11.0
- Parameters
- ----------
- u : array_like
- 1-D array of latitude coordinates in strictly ascending order.
- Coordinates must be given in radians and lie within the interval
- (0, pi).
- v : array_like
- 1-D array of longitude coordinates in strictly ascending order.
- Coordinates must be given in radians. First element (v[0]) must lie
- within the interval [-pi, pi). Last element (v[-1]) must satisfy
- v[-1] <= v[0] + 2*pi.
- r : array_like
- 2-D array of data with shape ``(u.size, v.size)``.
- s : float, optional
- Positive smoothing factor defined for estimation condition
- (``s=0`` is for interpolation).
- pole_continuity : bool or (bool, bool), optional
- Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
- ``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole
- will be 1 or 0 when this is True or False, respectively.
- Defaults to False.
- pole_values : float or (float, float), optional
- Data values at the poles ``u=0`` and ``u=pi``. Either the whole
- parameter or each individual element can be None. Defaults to None.
- pole_exact : bool or (bool, bool), optional
- Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the
- value is considered to be the right function value, and it will be
- fitted exactly. If False, the value will be considered to be a data
- value just like the other data values. Defaults to False.
- pole_flat : bool or (bool, bool), optional
- For the poles at ``u=0`` and ``u=pi``, specify whether or not the
- approximation has vanishing derivatives. Defaults to False.
- See Also
- --------
- RectBivariateSpline : bivariate spline approximation over a rectangular
- mesh
- Notes
- -----
- Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
- ``iopt[0] = 1`` in the FITPACK routine) is supported. The exact
- least-squares spline approximation is not implemented yet.
- When actually performing the interpolation, the requested `v` values must
- lie within the same length 2pi interval that the original `v` values were
- chosen from.
- For more information, see the FITPACK_ site about this function.
- .. _FITPACK: http://www.netlib.org/dierckx/spgrid.f
- Examples
- --------
- Suppose we have global data on a coarse grid
- >>> lats = np.linspace(10, 170, 9) * np.pi / 180.
- >>> lons = np.linspace(0, 350, 18) * np.pi / 180.
- >>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
- ... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
- We want to interpolate it to a global one-degree grid
- >>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
- >>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
- >>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)
- We need to set up the interpolator object
- >>> from scipy.interpolate import RectSphereBivariateSpline
- >>> lut = RectSphereBivariateSpline(lats, lons, data)
- Finally we interpolate the data. The `RectSphereBivariateSpline` object
- only takes 1-D arrays as input, therefore we need to do some reshaping.
- >>> data_interp = lut.ev(new_lats.ravel(),
- ... new_lons.ravel()).reshape((360, 180)).T
- Looking at the original and the interpolated data, one can see that the
- interpolant reproduces the original data very well:
- >>> import matplotlib.pyplot as plt
- >>> fig = plt.figure()
- >>> ax1 = fig.add_subplot(211)
- >>> ax1.imshow(data, interpolation='nearest')
- >>> ax2 = fig.add_subplot(212)
- >>> ax2.imshow(data_interp, interpolation='nearest')
- >>> plt.show()
- Choosing the optimal value of ``s`` can be a delicate task. Recommended
- values for ``s`` depend on the accuracy of the data values. If the user
- has an idea of the statistical errors on the data, she can also find a
- proper estimate for ``s``. By assuming that, if she specifies the
- right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
- reproduces the function underlying the data, she can evaluate
- ``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
- For example, if she knows that the statistical errors on her
- ``r(i,j)``-values are not greater than 0.1, she may expect that a good
- ``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.
- If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
- be determined by trial and error. The best is then to start with a very
- large value of ``s`` (to determine the least-squares polynomial and the
- corresponding upper bound ``fp0`` for ``s``) and then to progressively
- decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
- ``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation
- shows more detail) to obtain closer fits.
- The interpolation results for different values of ``s`` give some insight
- into this process:
- >>> fig2 = plt.figure()
- >>> s = [3e9, 2e9, 1e9, 1e8]
- >>> for ii in range(len(s)):
- ... lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii])
- ... data_interp = lut.ev(new_lats.ravel(),
- ... new_lons.ravel()).reshape((360, 180)).T
- ... ax = fig2.add_subplot(2, 2, ii+1)
- ... ax.imshow(data_interp, interpolation='nearest')
- ... ax.set_title("s = %g" % s[ii])
- >>> plt.show()
- """
- def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
- pole_exact=False, pole_flat=False):
- iopt = np.array([0, 0, 0], dtype=int)
- ider = np.array([-1, 0, -1, 0], dtype=int)
- if pole_values is None:
- pole_values = (None, None)
- elif isinstance(pole_values, (float, np.float32, np.float64)):
- pole_values = (pole_values, pole_values)
- if isinstance(pole_continuity, bool):
- pole_continuity = (pole_continuity, pole_continuity)
- if isinstance(pole_exact, bool):
- pole_exact = (pole_exact, pole_exact)
- if isinstance(pole_flat, bool):
- pole_flat = (pole_flat, pole_flat)
- r0, r1 = pole_values
- iopt[1:] = pole_continuity
- if r0 is None:
- ider[0] = -1
- else:
- ider[0] = pole_exact[0]
- if r1 is None:
- ider[2] = -1
- else:
- ider[2] = pole_exact[1]
- ider[1], ider[3] = pole_flat
- u, v = np.ravel(u), np.ravel(v)
- if not np.all(np.diff(u) > 0.0):
- raise ValueError('u must be strictly increasing')
- if not np.all(np.diff(v) > 0.0):
- raise ValueError('v must be strictly increasing')
- if not u.size == r.shape[0]:
- raise ValueError('u dimension of r must have same number of '
- 'elements as u')
- if not v.size == r.shape[1]:
- raise ValueError('v dimension of r must have same number of '
- 'elements as v')
- if pole_continuity[1] is False and pole_flat[1] is True:
- raise ValueError('if pole_continuity is False, so must be '
- 'pole_flat')
- if pole_continuity[0] is False and pole_flat[0] is True:
- raise ValueError('if pole_continuity is False, so must be '
- 'pole_flat')
- r = np.ravel(r)
- nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
- u.copy(), v.copy(), r.copy(), r0, r1, s)
- if ier not in [0, -1, -2]:
- msg = _spfit_messages.get(ier, 'ier=%s' % (ier))
- raise ValueError(msg)
- self.fp = fp
- self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
- self.degrees = (3, 3)
|