123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769 |
- from __future__ import division, print_function, absolute_import
- import itertools
- from numpy.testing import (assert_, assert_equal, assert_almost_equal,
- assert_array_almost_equal, assert_array_equal,
- assert_allclose)
- from pytest import raises as assert_raises
- import pytest
- from numpy import mgrid, pi, sin, ogrid, poly1d, linspace
- import numpy as np
- from scipy._lib.six import xrange
- from scipy._lib._numpy_compat import _assert_warns, suppress_warnings
- from scipy.interpolate import (interp1d, interp2d, lagrange, PPoly, BPoly,
- splrep, splev, splantider, splint, sproot, Akima1DInterpolator,
- RegularGridInterpolator, LinearNDInterpolator, NearestNDInterpolator,
- RectBivariateSpline, interpn, NdPPoly, BSpline)
- from scipy.special import poch, gamma
- from scipy.interpolate import _ppoly
- from scipy._lib._gcutils import assert_deallocated, IS_PYPY
- from scipy.integrate import nquad
- from scipy.special import binom
- class TestInterp2D(object):
- def test_interp2d(self):
- y, x = mgrid[0:2:20j, 0:pi:21j]
- z = sin(x+0.5*y)
- I = interp2d(x, y, z)
- assert_almost_equal(I(1.0, 2.0), sin(2.0), decimal=2)
- v,u = ogrid[0:2:24j, 0:pi:25j]
- assert_almost_equal(I(u.ravel(), v.ravel()), sin(u+0.5*v), decimal=2)
- def test_interp2d_meshgrid_input(self):
- # Ticket #703
- x = linspace(0, 2, 16)
- y = linspace(0, pi, 21)
- z = sin(x[None,:] + y[:,None]/2.)
- I = interp2d(x, y, z)
- assert_almost_equal(I(1.0, 2.0), sin(2.0), decimal=2)
- def test_interp2d_meshgrid_input_unsorted(self):
- np.random.seed(1234)
- x = linspace(0, 2, 16)
- y = linspace(0, pi, 21)
- z = sin(x[None,:] + y[:,None]/2.)
- ip1 = interp2d(x.copy(), y.copy(), z, kind='cubic')
- np.random.shuffle(x)
- z = sin(x[None,:] + y[:,None]/2.)
- ip2 = interp2d(x.copy(), y.copy(), z, kind='cubic')
- np.random.shuffle(x)
- np.random.shuffle(y)
- z = sin(x[None,:] + y[:,None]/2.)
- ip3 = interp2d(x, y, z, kind='cubic')
- x = linspace(0, 2, 31)
- y = linspace(0, pi, 30)
- assert_equal(ip1(x, y), ip2(x, y))
- assert_equal(ip1(x, y), ip3(x, y))
- def test_interp2d_eval_unsorted(self):
- y, x = mgrid[0:2:20j, 0:pi:21j]
- z = sin(x + 0.5*y)
- func = interp2d(x, y, z)
- xe = np.array([3, 4, 5])
- ye = np.array([5.3, 7.1])
- assert_allclose(func(xe, ye), func(xe, ye[::-1]))
- assert_raises(ValueError, func, xe, ye[::-1], 0, 0, True)
- def test_interp2d_linear(self):
- # Ticket #898
- a = np.zeros([5, 5])
- a[2, 2] = 1.0
- x = y = np.arange(5)
- b = interp2d(x, y, a, 'linear')
- assert_almost_equal(b(2.0, 1.5), np.array([0.5]), decimal=2)
- assert_almost_equal(b(2.0, 2.5), np.array([0.5]), decimal=2)
- def test_interp2d_bounds(self):
- x = np.linspace(0, 1, 5)
- y = np.linspace(0, 2, 7)
- z = x[None, :]**2 + y[:, None]
- ix = np.linspace(-1, 3, 31)
- iy = np.linspace(-1, 3, 33)
- b = interp2d(x, y, z, bounds_error=True)
- assert_raises(ValueError, b, ix, iy)
- b = interp2d(x, y, z, fill_value=np.nan)
- iz = b(ix, iy)
- mx = (ix < 0) | (ix > 1)
- my = (iy < 0) | (iy > 2)
- assert_(np.isnan(iz[my,:]).all())
- assert_(np.isnan(iz[:,mx]).all())
- assert_(np.isfinite(iz[~my,:][:,~mx]).all())
- class TestInterp1D(object):
- def setup_method(self):
- self.x5 = np.arange(5.)
- self.x10 = np.arange(10.)
- self.y10 = np.arange(10.)
- self.x25 = self.x10.reshape((2,5))
- self.x2 = np.arange(2.)
- self.y2 = np.arange(2.)
- self.x1 = np.array([0.])
- self.y1 = np.array([0.])
- self.y210 = np.arange(20.).reshape((2, 10))
- self.y102 = np.arange(20.).reshape((10, 2))
- self.y225 = np.arange(20.).reshape((2, 2, 5))
- self.y25 = np.arange(10.).reshape((2, 5))
- self.y235 = np.arange(30.).reshape((2, 3, 5))
- self.y325 = np.arange(30.).reshape((3, 2, 5))
- self.fill_value = -100.0
- def test_validation(self):
- # Make sure that appropriate exceptions are raised when invalid values
- # are given to the constructor.
- # These should all work.
- for kind in ('nearest', 'zero', 'linear', 'slinear', 'quadratic',
- 'cubic', 'previous', 'next'):
- interp1d(self.x10, self.y10, kind=kind)
- interp1d(self.x10, self.y10, kind=kind, fill_value="extrapolate")
- interp1d(self.x10, self.y10, kind='linear', fill_value=(-1, 1))
- interp1d(self.x10, self.y10, kind='linear',
- fill_value=np.array([-1]))
- interp1d(self.x10, self.y10, kind='linear',
- fill_value=(-1,))
- interp1d(self.x10, self.y10, kind='linear',
- fill_value=-1)
- interp1d(self.x10, self.y10, kind='linear',
- fill_value=(-1, -1))
- interp1d(self.x10, self.y10, kind=0)
- interp1d(self.x10, self.y10, kind=1)
- interp1d(self.x10, self.y10, kind=2)
- interp1d(self.x10, self.y10, kind=3)
- interp1d(self.x10, self.y210, kind='linear', axis=-1,
- fill_value=(-1, -1))
- interp1d(self.x2, self.y210, kind='linear', axis=0,
- fill_value=np.ones(10))
- interp1d(self.x2, self.y210, kind='linear', axis=0,
- fill_value=(np.ones(10), np.ones(10)))
- interp1d(self.x2, self.y210, kind='linear', axis=0,
- fill_value=(np.ones(10), -1))
- # x array must be 1D.
- assert_raises(ValueError, interp1d, self.x25, self.y10)
- # y array cannot be a scalar.
- assert_raises(ValueError, interp1d, self.x10, np.array(0))
- # Check for x and y arrays having the same length.
- assert_raises(ValueError, interp1d, self.x10, self.y2)
- assert_raises(ValueError, interp1d, self.x2, self.y10)
- assert_raises(ValueError, interp1d, self.x10, self.y102)
- interp1d(self.x10, self.y210)
- interp1d(self.x10, self.y102, axis=0)
- # Check for x and y having at least 1 element.
- assert_raises(ValueError, interp1d, self.x1, self.y10)
- assert_raises(ValueError, interp1d, self.x10, self.y1)
- assert_raises(ValueError, interp1d, self.x1, self.y1)
- # Bad fill values
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=(-1, -1, -1)) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=[-1, -1, -1]) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=np.array((-1, -1, -1))) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=[[-1]]) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=[-1, -1]) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=np.array([])) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x10, self.y10, kind='linear',
- fill_value=()) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x2, self.y210, kind='linear',
- axis=0, fill_value=[-1, -1]) # doesn't broadcast
- assert_raises(ValueError, interp1d, self.x2, self.y210, kind='linear',
- axis=0, fill_value=(0., [-1, -1])) # above doesn't bc
- def test_init(self):
- # Check that the attributes are initialized appropriately by the
- # constructor.
- assert_(interp1d(self.x10, self.y10).copy)
- assert_(not interp1d(self.x10, self.y10, copy=False).copy)
- assert_(interp1d(self.x10, self.y10).bounds_error)
- assert_(not interp1d(self.x10, self.y10, bounds_error=False).bounds_error)
- assert_(np.isnan(interp1d(self.x10, self.y10).fill_value))
- assert_equal(interp1d(self.x10, self.y10, fill_value=3.0).fill_value,
- 3.0)
- assert_equal(interp1d(self.x10, self.y10, fill_value=(1.0, 2.0)).fill_value,
- (1.0, 2.0))
- assert_equal(interp1d(self.x10, self.y10).axis, 0)
- assert_equal(interp1d(self.x10, self.y210).axis, 1)
- assert_equal(interp1d(self.x10, self.y102, axis=0).axis, 0)
- assert_array_equal(interp1d(self.x10, self.y10).x, self.x10)
- assert_array_equal(interp1d(self.x10, self.y10).y, self.y10)
- assert_array_equal(interp1d(self.x10, self.y210).y, self.y210)
- def test_assume_sorted(self):
- # Check for unsorted arrays
- interp10 = interp1d(self.x10, self.y10)
- interp10_unsorted = interp1d(self.x10[::-1], self.y10[::-1])
- assert_array_almost_equal(interp10_unsorted(self.x10), self.y10)
- assert_array_almost_equal(interp10_unsorted(1.2), np.array([1.2]))
- assert_array_almost_equal(interp10_unsorted([2.4, 5.6, 6.0]),
- interp10([2.4, 5.6, 6.0]))
- # Check assume_sorted keyword (defaults to False)
- interp10_assume_kw = interp1d(self.x10[::-1], self.y10[::-1],
- assume_sorted=False)
- assert_array_almost_equal(interp10_assume_kw(self.x10), self.y10)
- interp10_assume_kw2 = interp1d(self.x10[::-1], self.y10[::-1],
- assume_sorted=True)
- # Should raise an error for unsorted input if assume_sorted=True
- assert_raises(ValueError, interp10_assume_kw2, self.x10)
- # Check that if y is a 2-D array, things are still consistent
- interp10_y_2d = interp1d(self.x10, self.y210)
- interp10_y_2d_unsorted = interp1d(self.x10[::-1], self.y210[:, ::-1])
- assert_array_almost_equal(interp10_y_2d(self.x10),
- interp10_y_2d_unsorted(self.x10))
- def test_linear(self):
- for kind in ['linear', 'slinear']:
- self._check_linear(kind)
- def _check_linear(self, kind):
- # Check the actual implementation of linear interpolation.
- interp10 = interp1d(self.x10, self.y10, kind=kind)
- assert_array_almost_equal(interp10(self.x10), self.y10)
- assert_array_almost_equal(interp10(1.2), np.array([1.2]))
- assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
- np.array([2.4, 5.6, 6.0]))
- # test fill_value="extrapolate"
- extrapolator = interp1d(self.x10, self.y10, kind=kind,
- fill_value='extrapolate')
- assert_allclose(extrapolator([-1., 0, 9, 11]),
- [-1, 0, 9, 11], rtol=1e-14)
- opts = dict(kind=kind,
- fill_value='extrapolate',
- bounds_error=True)
- assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
- def test_linear_dtypes(self):
- # regression test for gh-5898, where 1D linear interpolation has been
- # delegated to numpy.interp for all float dtypes, and the latter was
- # not handling e.g. np.float128.
- for dtyp in np.sctypes["float"]:
- x = np.arange(8, dtype=dtyp)
- y = x
- yp = interp1d(x, y, kind='linear')(x)
- assert_equal(yp.dtype, dtyp)
- assert_allclose(yp, y, atol=1e-15)
- def test_slinear_dtypes(self):
- # regression test for gh-7273: 1D slinear interpolation fails with
- # float32 inputs
- dt_r = [np.float16, np.float32, np.float64]
- dt_rc = dt_r + [np.complex64, np.complex128]
- spline_kinds = ['slinear', 'zero', 'quadratic', 'cubic']
- for dtx in dt_r:
- x = np.arange(0, 10, dtype=dtx)
- for dty in dt_rc:
- y = np.exp(-x/3.0).astype(dty)
- for dtn in dt_r:
- xnew = x.astype(dtn)
- for kind in spline_kinds:
- f = interp1d(x, y, kind=kind, bounds_error=False)
- assert_allclose(f(xnew), y, atol=1e-7,
- err_msg="%s, %s %s" % (dtx, dty, dtn))
- def test_cubic(self):
- # Check the actual implementation of spline interpolation.
- interp10 = interp1d(self.x10, self.y10, kind='cubic')
- assert_array_almost_equal(interp10(self.x10), self.y10)
- assert_array_almost_equal(interp10(1.2), np.array([1.2]))
- assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
- np.array([2.4, 5.6, 6.0]),)
- def test_nearest(self):
- # Check the actual implementation of nearest-neighbour interpolation.
- interp10 = interp1d(self.x10, self.y10, kind='nearest')
- assert_array_almost_equal(interp10(self.x10), self.y10)
- assert_array_almost_equal(interp10(1.2), np.array(1.))
- assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
- np.array([2., 6., 6.]),)
- # test fill_value="extrapolate"
- extrapolator = interp1d(self.x10, self.y10, kind='nearest',
- fill_value='extrapolate')
- assert_allclose(extrapolator([-1., 0, 9, 11]),
- [0, 0, 9, 9], rtol=1e-14)
- opts = dict(kind='nearest',
- fill_value='extrapolate',
- bounds_error=True)
- assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
- def test_previous(self):
- # Check the actual implementation of previous interpolation.
- interp10 = interp1d(self.x10, self.y10, kind='previous')
- assert_array_almost_equal(interp10(self.x10), self.y10)
- assert_array_almost_equal(interp10(1.2), np.array(1.))
- assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
- np.array([2., 5., 6.]),)
- # test fill_value="extrapolate"
- extrapolator = interp1d(self.x10, self.y10, kind='previous',
- fill_value='extrapolate')
- assert_allclose(extrapolator([-1., 0, 9, 11]),
- [0, 0, 9, 9], rtol=1e-14)
- opts = dict(kind='previous',
- fill_value='extrapolate',
- bounds_error=True)
- assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
- def test_next(self):
- # Check the actual implementation of next interpolation.
- interp10 = interp1d(self.x10, self.y10, kind='next')
- assert_array_almost_equal(interp10(self.x10), self.y10)
- assert_array_almost_equal(interp10(1.2), np.array(2.))
- assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
- np.array([3., 6., 6.]),)
- # test fill_value="extrapolate"
- extrapolator = interp1d(self.x10, self.y10, kind='next',
- fill_value='extrapolate')
- assert_allclose(extrapolator([-1., 0, 9, 11]),
- [0, 0, 9, 9], rtol=1e-14)
- opts = dict(kind='next',
- fill_value='extrapolate',
- bounds_error=True)
- assert_raises(ValueError, interp1d, self.x10, self.y10, **opts)
- def test_zero(self):
- # Check the actual implementation of zero-order spline interpolation.
- interp10 = interp1d(self.x10, self.y10, kind='zero')
- assert_array_almost_equal(interp10(self.x10), self.y10)
- assert_array_almost_equal(interp10(1.2), np.array(1.))
- assert_array_almost_equal(interp10([2.4, 5.6, 6.0]),
- np.array([2., 5., 6.]))
- def _bounds_check(self, kind='linear'):
- # Test that our handling of out-of-bounds input is correct.
- extrap10 = interp1d(self.x10, self.y10, fill_value=self.fill_value,
- bounds_error=False, kind=kind)
- assert_array_equal(extrap10(11.2), np.array(self.fill_value))
- assert_array_equal(extrap10(-3.4), np.array(self.fill_value))
- assert_array_equal(extrap10([[[11.2], [-3.4], [12.6], [19.3]]]),
- np.array(self.fill_value),)
- assert_array_equal(extrap10._check_bounds(
- np.array([-1.0, 0.0, 5.0, 9.0, 11.0])),
- np.array([[True, False, False, False, False],
- [False, False, False, False, True]]))
- raises_bounds_error = interp1d(self.x10, self.y10, bounds_error=True,
- kind=kind)
- assert_raises(ValueError, raises_bounds_error, -1.0)
- assert_raises(ValueError, raises_bounds_error, 11.0)
- raises_bounds_error([0.0, 5.0, 9.0])
- def _bounds_check_int_nan_fill(self, kind='linear'):
- x = np.arange(10).astype(np.int_)
- y = np.arange(10).astype(np.int_)
- c = interp1d(x, y, kind=kind, fill_value=np.nan, bounds_error=False)
- yi = c(x - 1)
- assert_(np.isnan(yi[0]))
- assert_array_almost_equal(yi, np.r_[np.nan, y[:-1]])
- def test_bounds(self):
- for kind in ('linear', 'cubic', 'nearest', 'previous', 'next',
- 'slinear', 'zero', 'quadratic'):
- self._bounds_check(kind)
- self._bounds_check_int_nan_fill(kind)
- def _check_fill_value(self, kind):
- interp = interp1d(self.x10, self.y10, kind=kind,
- fill_value=(-100, 100), bounds_error=False)
- assert_array_almost_equal(interp(10), 100)
- assert_array_almost_equal(interp(-10), -100)
- assert_array_almost_equal(interp([-10, 10]), [-100, 100])
- # Proper broadcasting:
- # interp along axis of length 5
- # other dim=(2, 3), (3, 2), (2, 2), or (2,)
- # one singleton fill_value (works for all)
- for y in (self.y235, self.y325, self.y225, self.y25):
- interp = interp1d(self.x5, y, kind=kind, axis=-1,
- fill_value=100, bounds_error=False)
- assert_array_almost_equal(interp(10), 100)
- assert_array_almost_equal(interp(-10), 100)
- assert_array_almost_equal(interp([-10, 10]), 100)
- # singleton lower, singleton upper
- interp = interp1d(self.x5, y, kind=kind, axis=-1,
- fill_value=(-100, 100), bounds_error=False)
- assert_array_almost_equal(interp(10), 100)
- assert_array_almost_equal(interp(-10), -100)
- if y.ndim == 3:
- result = [[[-100, 100]] * y.shape[1]] * y.shape[0]
- else:
- result = [[-100, 100]] * y.shape[0]
- assert_array_almost_equal(interp([-10, 10]), result)
- # one broadcastable (3,) fill_value
- fill_value = [100, 200, 300]
- for y in (self.y325, self.y225):
- assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- interp = interp1d(self.x5, self.y235, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- assert_array_almost_equal(interp(10), [[100, 200, 300]] * 2)
- assert_array_almost_equal(interp(-10), [[100, 200, 300]] * 2)
- assert_array_almost_equal(interp([-10, 10]), [[[100, 100],
- [200, 200],
- [300, 300]]] * 2)
- # one broadcastable (2,) fill_value
- fill_value = [100, 200]
- assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- for y in (self.y225, self.y325, self.y25):
- interp = interp1d(self.x5, y, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- result = [100, 200]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp(10), result)
- assert_array_almost_equal(interp(-10), result)
- result = [[100, 100], [200, 200]]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp([-10, 10]), result)
- # broadcastable (3,) lower, singleton upper
- fill_value = (np.array([-100, -200, -300]), 100)
- for y in (self.y325, self.y225):
- assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- interp = interp1d(self.x5, self.y235, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- assert_array_almost_equal(interp(10), 100)
- assert_array_almost_equal(interp(-10), [[-100, -200, -300]] * 2)
- assert_array_almost_equal(interp([-10, 10]), [[[-100, 100],
- [-200, 100],
- [-300, 100]]] * 2)
- # broadcastable (2,) lower, singleton upper
- fill_value = (np.array([-100, -200]), 100)
- assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- for y in (self.y225, self.y325, self.y25):
- interp = interp1d(self.x5, y, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- assert_array_almost_equal(interp(10), 100)
- result = [-100, -200]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp(-10), result)
- result = [[-100, 100], [-200, 100]]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp([-10, 10]), result)
- # broadcastable (3,) lower, broadcastable (3,) upper
- fill_value = ([-100, -200, -300], [100, 200, 300])
- for y in (self.y325, self.y225):
- assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- for ii in range(2): # check ndarray as well as list here
- if ii == 1:
- fill_value = tuple(np.array(f) for f in fill_value)
- interp = interp1d(self.x5, self.y235, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- assert_array_almost_equal(interp(10), [[100, 200, 300]] * 2)
- assert_array_almost_equal(interp(-10), [[-100, -200, -300]] * 2)
- assert_array_almost_equal(interp([-10, 10]), [[[-100, 100],
- [-200, 200],
- [-300, 300]]] * 2)
- # broadcastable (2,) lower, broadcastable (2,) upper
- fill_value = ([-100, -200], [100, 200])
- assert_raises(ValueError, interp1d, self.x5, self.y235, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- for y in (self.y325, self.y225, self.y25):
- interp = interp1d(self.x5, y, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- result = [100, 200]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp(10), result)
- result = [-100, -200]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp(-10), result)
- result = [[-100, 100], [-200, 200]]
- if y.ndim == 3:
- result = [result] * y.shape[0]
- assert_array_almost_equal(interp([-10, 10]), result)
- # one broadcastable (2, 2) array-like
- fill_value = [[100, 200], [1000, 2000]]
- for y in (self.y235, self.y325, self.y25):
- assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- for ii in range(2):
- if ii == 1:
- fill_value = np.array(fill_value)
- interp = interp1d(self.x5, self.y225, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- assert_array_almost_equal(interp(10), [[100, 200], [1000, 2000]])
- assert_array_almost_equal(interp(-10), [[100, 200], [1000, 2000]])
- assert_array_almost_equal(interp([-10, 10]), [[[100, 100],
- [200, 200]],
- [[1000, 1000],
- [2000, 2000]]])
- # broadcastable (2, 2) lower, broadcastable (2, 2) upper
- fill_value = ([[-100, -200], [-1000, -2000]],
- [[100, 200], [1000, 2000]])
- for y in (self.y235, self.y325, self.y25):
- assert_raises(ValueError, interp1d, self.x5, y, kind=kind,
- axis=-1, fill_value=fill_value, bounds_error=False)
- for ii in range(2):
- if ii == 1:
- fill_value = (np.array(fill_value[0]), np.array(fill_value[1]))
- interp = interp1d(self.x5, self.y225, kind=kind, axis=-1,
- fill_value=fill_value, bounds_error=False)
- assert_array_almost_equal(interp(10), [[100, 200], [1000, 2000]])
- assert_array_almost_equal(interp(-10), [[-100, -200],
- [-1000, -2000]])
- assert_array_almost_equal(interp([-10, 10]), [[[-100, 100],
- [-200, 200]],
- [[-1000, 1000],
- [-2000, 2000]]])
- def test_fill_value(self):
- # test that two-element fill value works
- for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic',
- 'zero', 'previous', 'next'):
- self._check_fill_value(kind)
- def test_fill_value_writeable(self):
- # backwards compat: fill_value is a public writeable attribute
- interp = interp1d(self.x10, self.y10, fill_value=123.0)
- assert_equal(interp.fill_value, 123.0)
- interp.fill_value = 321.0
- assert_equal(interp.fill_value, 321.0)
- def _nd_check_interp(self, kind='linear'):
- # Check the behavior when the inputs and outputs are multidimensional.
- # Multidimensional input.
- interp10 = interp1d(self.x10, self.y10, kind=kind)
- assert_array_almost_equal(interp10(np.array([[3., 5.], [2., 7.]])),
- np.array([[3., 5.], [2., 7.]]))
- # Scalar input -> 0-dim scalar array output
- assert_(isinstance(interp10(1.2), np.ndarray))
- assert_equal(interp10(1.2).shape, ())
- # Multidimensional outputs.
- interp210 = interp1d(self.x10, self.y210, kind=kind)
- assert_array_almost_equal(interp210(1.), np.array([1., 11.]))
- assert_array_almost_equal(interp210(np.array([1., 2.])),
- np.array([[1., 2.], [11., 12.]]))
- interp102 = interp1d(self.x10, self.y102, axis=0, kind=kind)
- assert_array_almost_equal(interp102(1.), np.array([2.0, 3.0]))
- assert_array_almost_equal(interp102(np.array([1., 3.])),
- np.array([[2., 3.], [6., 7.]]))
- # Both at the same time!
- x_new = np.array([[3., 5.], [2., 7.]])
- assert_array_almost_equal(interp210(x_new),
- np.array([[[3., 5.], [2., 7.]],
- [[13., 15.], [12., 17.]]]))
- assert_array_almost_equal(interp102(x_new),
- np.array([[[6., 7.], [10., 11.]],
- [[4., 5.], [14., 15.]]]))
- def _nd_check_shape(self, kind='linear'):
- # Check large ndim output shape
- a = [4, 5, 6, 7]
- y = np.arange(np.prod(a)).reshape(*a)
- for n, s in enumerate(a):
- x = np.arange(s)
- z = interp1d(x, y, axis=n, kind=kind)
- assert_array_almost_equal(z(x), y, err_msg=kind)
- x2 = np.arange(2*3*1).reshape((2,3,1)) / 12.
- b = list(a)
- b[n:n+1] = [2,3,1]
- assert_array_almost_equal(z(x2).shape, b, err_msg=kind)
- def test_nd(self):
- for kind in ('linear', 'cubic', 'slinear', 'quadratic', 'nearest',
- 'zero', 'previous', 'next'):
- self._nd_check_interp(kind)
- self._nd_check_shape(kind)
- def _check_complex(self, dtype=np.complex_, kind='linear'):
- x = np.array([1, 2.5, 3, 3.1, 4, 6.4, 7.9, 8.0, 9.5, 10])
- y = x * x ** (1 + 2j)
- y = y.astype(dtype)
- # simple test
- c = interp1d(x, y, kind=kind)
- assert_array_almost_equal(y[:-1], c(x)[:-1])
- # check against interpolating real+imag separately
- xi = np.linspace(1, 10, 31)
- cr = interp1d(x, y.real, kind=kind)
- ci = interp1d(x, y.imag, kind=kind)
- assert_array_almost_equal(c(xi).real, cr(xi))
- assert_array_almost_equal(c(xi).imag, ci(xi))
- def test_complex(self):
- for kind in ('linear', 'nearest', 'cubic', 'slinear', 'quadratic',
- 'zero', 'previous', 'next'):
- self._check_complex(np.complex64, kind)
- self._check_complex(np.complex128, kind)
- @pytest.mark.skipif(IS_PYPY, reason="Test not meaningful on PyPy")
- def test_circular_refs(self):
- # Test interp1d can be automatically garbage collected
- x = np.linspace(0, 1)
- y = np.linspace(0, 1)
- # Confirm interp can be released from memory after use
- with assert_deallocated(interp1d, x, y) as interp:
- new_y = interp([0.1, 0.2])
- del interp
- def test_overflow_nearest(self):
- # Test that the x range doesn't overflow when given integers as input
- for kind in ('nearest', 'previous', 'next'):
- x = np.array([0, 50, 127], dtype=np.int8)
- ii = interp1d(x, x, kind=kind)
- assert_array_almost_equal(ii(x), x)
- def test_local_nans(self):
- # check that for local interpolation kinds (slinear, zero) a single nan
- # only affects its local neighborhood
- x = np.arange(10).astype(float)
- y = x.copy()
- y[6] = np.nan
- for kind in ('zero', 'slinear'):
- ir = interp1d(x, y, kind=kind)
- vals = ir([4.9, 7.0])
- assert_(np.isfinite(vals).all())
- def test_spline_nans(self):
- # Backwards compat: a single nan makes the whole spline interpolation
- # return nans in an array of the correct shape. And it doesn't raise,
- # just quiet nans because of backcompat.
- x = np.arange(8).astype(float)
- y = x.copy()
- yn = y.copy()
- yn[3] = np.nan
- for kind in ['quadratic', 'cubic']:
- ir = interp1d(x, y, kind=kind)
- irn = interp1d(x, yn, kind=kind)
- for xnew in (6, [1, 6], [[1, 6], [3, 5]]):
- xnew = np.asarray(xnew)
- out, outn = ir(x), irn(x)
- assert_(np.isnan(outn).all())
- assert_equal(out.shape, outn.shape)
- def test_read_only(self):
- x = np.arange(0, 10)
- y = np.exp(-x / 3.0)
- xnew = np.arange(0, 9, 0.1)
- # Check both read-only and not read-only:
- for writeable in (True, False):
- xnew.flags.writeable = writeable
- for kind in ('linear', 'nearest', 'zero', 'slinear', 'quadratic',
- 'cubic'):
- f = interp1d(x, y, kind=kind)
- vals = f(xnew)
- assert_(np.isfinite(vals).all())
- class TestLagrange(object):
- def test_lagrange(self):
- p = poly1d([5,2,1,4,3])
- xs = np.arange(len(p.coeffs))
- ys = p(xs)
- pl = lagrange(xs,ys)
- assert_array_almost_equal(p.coeffs,pl.coeffs)
- class TestAkima1DInterpolator(object):
- def test_eval(self):
- x = np.arange(0., 11.)
- y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
- ak = Akima1DInterpolator(x, y)
- xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
- 8.6, 9.9, 10.])
- yi = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375,
- 4.1363636363636366866103344, 5.9803623910336236590978842,
- 5.5067291516462386624652936, 5.2031367459745245795943447,
- 4.1796554159017080820603951, 3.4110386597938129327189927,
- 3.])
- assert_allclose(ak(xi), yi)
- def test_eval_2d(self):
- x = np.arange(0., 11.)
- y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
- y = np.column_stack((y, 2. * y))
- ak = Akima1DInterpolator(x, y)
- xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
- 8.6, 9.9, 10.])
- yi = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375,
- 4.1363636363636366866103344,
- 5.9803623910336236590978842,
- 5.5067291516462386624652936,
- 5.2031367459745245795943447,
- 4.1796554159017080820603951,
- 3.4110386597938129327189927, 3.])
- yi = np.column_stack((yi, 2. * yi))
- assert_allclose(ak(xi), yi)
- def test_eval_3d(self):
- x = np.arange(0., 11.)
- y_ = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
- y = np.empty((11, 2, 2))
- y[:, 0, 0] = y_
- y[:, 1, 0] = 2. * y_
- y[:, 0, 1] = 3. * y_
- y[:, 1, 1] = 4. * y_
- ak = Akima1DInterpolator(x, y)
- xi = np.array([0., 0.5, 1., 1.5, 2.5, 3.5, 4.5, 5.1, 6.5, 7.2,
- 8.6, 9.9, 10.])
- yi = np.empty((13, 2, 2))
- yi_ = np.array([0., 1.375, 2., 1.5, 1.953125, 2.484375,
- 4.1363636363636366866103344,
- 5.9803623910336236590978842,
- 5.5067291516462386624652936,
- 5.2031367459745245795943447,
- 4.1796554159017080820603951,
- 3.4110386597938129327189927, 3.])
- yi[:, 0, 0] = yi_
- yi[:, 1, 0] = 2. * yi_
- yi[:, 0, 1] = 3. * yi_
- yi[:, 1, 1] = 4. * yi_
- assert_allclose(ak(xi), yi)
- def test_degenerate_case_multidimensional(self):
- # This test is for issue #5683.
- x = np.array([0, 1, 2])
- y = np.vstack((x, x**2)).T
- ak = Akima1DInterpolator(x, y)
- x_eval = np.array([0.5, 1.5])
- y_eval = ak(x_eval)
- assert_allclose(y_eval, np.vstack((x_eval, x_eval**2)).T)
- def test_extend(self):
- x = np.arange(0., 11.)
- y = np.array([0., 2., 1., 3., 2., 6., 5.5, 5.5, 2.7, 5.1, 3.])
- ak = Akima1DInterpolator(x, y)
- match = "Extending a 1D Akima interpolator is not yet implemented"
- with pytest.raises(NotImplementedError, match=match):
- ak.extend(None, None)
- class TestPPolyCommon(object):
- # test basic functionality for PPoly and BPoly
- def test_sort_check(self):
- c = np.array([[1, 4], [2, 5], [3, 6]])
- x = np.array([0, 1, 0.5])
- assert_raises(ValueError, PPoly, c, x)
- assert_raises(ValueError, BPoly, c, x)
- def test_ctor_c(self):
- # wrong shape: `c` must be at least 2-dimensional
- with assert_raises(ValueError):
- PPoly([1, 2], [0, 1])
- def test_extend(self):
- # Test adding new points to the piecewise polynomial
- np.random.seed(1234)
- order = 3
- x = np.unique(np.r_[0, 10 * np.random.rand(30), 10])
- c = 2*np.random.rand(order+1, len(x)-1, 2, 3) - 1
- for cls in (PPoly, BPoly):
- pp = cls(c[:,:9], x[:10])
- pp.extend(c[:,9:], x[10:])
- pp2 = cls(c[:, 10:], x[10:])
- pp2.extend(c[:, :10], x[:10])
- pp3 = cls(c, x)
- assert_array_equal(pp.c, pp3.c)
- assert_array_equal(pp.x, pp3.x)
- assert_array_equal(pp2.c, pp3.c)
- assert_array_equal(pp2.x, pp3.x)
- def test_extend_diff_orders(self):
- # Test extending polynomial with different order one
- np.random.seed(1234)
- x = np.linspace(0, 1, 6)
- c = np.random.rand(2, 5)
- x2 = np.linspace(1, 2, 6)
- c2 = np.random.rand(4, 5)
- for cls in (PPoly, BPoly):
- pp1 = cls(c, x)
- pp2 = cls(c2, x2)
- pp_comb = cls(c, x)
- pp_comb.extend(c2, x2[1:])
- # NB. doesn't match to pp1 at the endpoint, because pp1 is not
- # continuous with pp2 as we took random coefs.
- xi1 = np.linspace(0, 1, 300, endpoint=False)
- xi2 = np.linspace(1, 2, 300)
- assert_allclose(pp1(xi1), pp_comb(xi1))
- assert_allclose(pp2(xi2), pp_comb(xi2))
- def test_extend_descending(self):
- np.random.seed(0)
- order = 3
- x = np.sort(np.random.uniform(0, 10, 20))
- c = np.random.rand(order + 1, x.shape[0] - 1, 2, 3)
- for cls in (PPoly, BPoly):
- p = cls(c, x)
- p1 = cls(c[:, :9], x[:10])
- p1.extend(c[:, 9:], x[10:])
- p2 = cls(c[:, 10:], x[10:])
- p2.extend(c[:, :10], x[:10])
- assert_array_equal(p1.c, p.c)
- assert_array_equal(p1.x, p.x)
- assert_array_equal(p2.c, p.c)
- assert_array_equal(p2.x, p.x)
- def test_shape(self):
- np.random.seed(1234)
- c = np.random.rand(8, 12, 5, 6, 7)
- x = np.sort(np.random.rand(13))
- xp = np.random.rand(3, 4)
- for cls in (PPoly, BPoly):
- p = cls(c, x)
- assert_equal(p(xp).shape, (3, 4, 5, 6, 7))
- # 'scalars'
- for cls in (PPoly, BPoly):
- p = cls(c[..., 0, 0, 0], x)
- assert_equal(np.shape(p(0.5)), ())
- assert_equal(np.shape(p(np.array(0.5))), ())
- # can't use dtype=object (with any numpy; what fails is
- # constructing the object array here for old numpy)
- assert_raises(ValueError, p, np.array([[0.1, 0.2], [0.4]]))
- def test_complex_coef(self):
- np.random.seed(12345)
- x = np.sort(np.random.random(13))
- c = np.random.random((8, 12)) * (1. + 0.3j)
- c_re, c_im = c.real, c.imag
- xp = np.random.random(5)
- for cls in (PPoly, BPoly):
- p, p_re, p_im = cls(c, x), cls(c_re, x), cls(c_im, x)
- for nu in [0, 1, 2]:
- assert_allclose(p(xp, nu).real, p_re(xp, nu))
- assert_allclose(p(xp, nu).imag, p_im(xp, nu))
- def test_axis(self):
- np.random.seed(12345)
- c = np.random.rand(3, 4, 5, 6, 7, 8)
- c_s = c.shape
- xp = np.random.random((1, 2))
- for axis in (0, 1, 2, 3):
- k, m = c.shape[axis], c.shape[axis+1]
- x = np.sort(np.random.rand(m+1))
- for cls in (PPoly, BPoly):
- p = cls(c, x, axis=axis)
- assert_equal(p.c.shape,
- c_s[axis:axis+2] + c_s[:axis] + c_s[axis+2:])
- res = p(xp)
- targ_shape = c_s[:axis] + xp.shape + c_s[2+axis:]
- assert_equal(res.shape, targ_shape)
- # deriv/antideriv does not drop the axis
- for p1 in [cls(c, x, axis=axis).derivative(),
- cls(c, x, axis=axis).derivative(2),
- cls(c, x, axis=axis).antiderivative(),
- cls(c, x, axis=axis).antiderivative(2)]:
- assert_equal(p1.axis, p.axis)
- # c array needs two axes for the coefficients and intervals, so
- # 0 <= axis < c.ndim-1; raise otherwise
- for axis in (-1, 4, 5, 6):
- for cls in (BPoly, PPoly):
- assert_raises(ValueError, cls, **dict(c=c, x=x, axis=axis))
- class TestPolySubclassing(object):
- class P(PPoly):
- pass
- class B(BPoly):
- pass
- def _make_polynomials(self):
- np.random.seed(1234)
- x = np.sort(np.random.random(3))
- c = np.random.random((4, 2))
- return self.P(c, x), self.B(c, x)
- def test_derivative(self):
- pp, bp = self._make_polynomials()
- for p in (pp, bp):
- pd = p.derivative()
- assert_equal(p.__class__, pd.__class__)
- ppa = pp.antiderivative()
- assert_equal(pp.__class__, ppa.__class__)
- def test_from_spline(self):
- np.random.seed(1234)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0)
- pp = self.P.from_spline(spl)
- assert_equal(pp.__class__, self.P)
- def test_conversions(self):
- pp, bp = self._make_polynomials()
- pp1 = self.P.from_bernstein_basis(bp)
- assert_equal(pp1.__class__, self.P)
- bp1 = self.B.from_power_basis(pp)
- assert_equal(bp1.__class__, self.B)
- def test_from_derivatives(self):
- x = [0, 1, 2]
- y = [[1], [2], [3]]
- bp = self.B.from_derivatives(x, y)
- assert_equal(bp.__class__, self.B)
- class TestPPoly(object):
- def test_simple(self):
- c = np.array([[1, 4], [2, 5], [3, 6]])
- x = np.array([0, 0.5, 1])
- p = PPoly(c, x)
- assert_allclose(p(0.3), 1*0.3**2 + 2*0.3 + 3)
- assert_allclose(p(0.7), 4*(0.7-0.5)**2 + 5*(0.7-0.5) + 6)
- def test_periodic(self):
- c = np.array([[1, 4], [2, 5], [3, 6]])
- x = np.array([0, 0.5, 1])
- p = PPoly(c, x, extrapolate='periodic')
- assert_allclose(p(1.3), 1 * 0.3 ** 2 + 2 * 0.3 + 3)
- assert_allclose(p(-0.3), 4 * (0.7 - 0.5) ** 2 + 5 * (0.7 - 0.5) + 6)
- assert_allclose(p(1.3, 1), 2 * 0.3 + 2)
- assert_allclose(p(-0.3, 1), 8 * (0.7 - 0.5) + 5)
- def test_descending(self):
- def binom_matrix(power):
- n = np.arange(power + 1).reshape(-1, 1)
- k = np.arange(power + 1)
- B = binom(n, k)
- return B[::-1, ::-1]
- np.random.seed(0)
- power = 3
- for m in [10, 20, 30]:
- x = np.sort(np.random.uniform(0, 10, m + 1))
- ca = np.random.uniform(-2, 2, size=(power + 1, m))
- h = np.diff(x)
- h_powers = h[None, :] ** np.arange(power + 1)[::-1, None]
- B = binom_matrix(power)
- cap = ca * h_powers
- cdp = np.dot(B.T, cap)
- cd = cdp / h_powers
- pa = PPoly(ca, x, extrapolate=True)
- pd = PPoly(cd[:, ::-1], x[::-1], extrapolate=True)
- x_test = np.random.uniform(-10, 20, 100)
- assert_allclose(pa(x_test), pd(x_test), rtol=1e-13)
- assert_allclose(pa(x_test, 1), pd(x_test, 1), rtol=1e-13)
- pa_d = pa.derivative()
- pd_d = pd.derivative()
- assert_allclose(pa_d(x_test), pd_d(x_test), rtol=1e-13)
- # Antiderivatives won't be equal because fixing continuity is
- # done in the reverse order, but surely the differences should be
- # equal.
- pa_i = pa.antiderivative()
- pd_i = pd.antiderivative()
- for a, b in np.random.uniform(-10, 20, (5, 2)):
- int_a = pa.integrate(a, b)
- int_d = pd.integrate(a, b)
- assert_allclose(int_a, int_d, rtol=1e-13)
- assert_allclose(pa_i(b) - pa_i(a), pd_i(b) - pd_i(a),
- rtol=1e-13)
- roots_d = pd.roots()
- roots_a = pa.roots()
- assert_allclose(roots_a, np.sort(roots_d), rtol=1e-12)
- def test_multi_shape(self):
- c = np.random.rand(6, 2, 1, 2, 3)
- x = np.array([0, 0.5, 1])
- p = PPoly(c, x)
- assert_equal(p.x.shape, x.shape)
- assert_equal(p.c.shape, c.shape)
- assert_equal(p(0.3).shape, c.shape[2:])
- assert_equal(p(np.random.rand(5, 6)).shape, (5, 6) + c.shape[2:])
- dp = p.derivative()
- assert_equal(dp.c.shape, (5, 2, 1, 2, 3))
- ip = p.antiderivative()
- assert_equal(ip.c.shape, (7, 2, 1, 2, 3))
- def test_construct_fast(self):
- np.random.seed(1234)
- c = np.array([[1, 4], [2, 5], [3, 6]], dtype=float)
- x = np.array([0, 0.5, 1])
- p = PPoly.construct_fast(c, x)
- assert_allclose(p(0.3), 1*0.3**2 + 2*0.3 + 3)
- assert_allclose(p(0.7), 4*(0.7-0.5)**2 + 5*(0.7-0.5) + 6)
- def test_vs_alternative_implementations(self):
- np.random.seed(1234)
- c = np.random.rand(3, 12, 22)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- p = PPoly(c, x)
- xp = np.r_[0.3, 0.5, 0.33, 0.6]
- expected = _ppoly_eval_1(c, x, xp)
- assert_allclose(p(xp), expected)
- expected = _ppoly_eval_2(c[:,:,0], x, xp)
- assert_allclose(p(xp)[:,0], expected)
- def test_from_spline(self):
- np.random.seed(1234)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0)
- pp = PPoly.from_spline(spl)
- xi = np.linspace(0, 1, 200)
- assert_allclose(pp(xi), splev(xi, spl))
- # make sure .from_spline accepts BSpline objects
- b = BSpline(*spl)
- ppp = PPoly.from_spline(b)
- assert_allclose(ppp(xi), b(xi))
- # BSpline's extrapolate attribute propagates unless overridden
- t, c, k = spl
- for extrap in (None, True, False):
- b = BSpline(t, c, k, extrapolate=extrap)
- p = PPoly.from_spline(b)
- assert_equal(p.extrapolate, b.extrapolate)
- def test_derivative_simple(self):
- np.random.seed(1234)
- c = np.array([[4, 3, 2, 1]]).T
- dc = np.array([[3*4, 2*3, 2]]).T
- ddc = np.array([[2*3*4, 1*2*3]]).T
- x = np.array([0, 1])
- pp = PPoly(c, x)
- dpp = PPoly(dc, x)
- ddpp = PPoly(ddc, x)
- assert_allclose(pp.derivative().c, dpp.c)
- assert_allclose(pp.derivative(2).c, ddpp.c)
- def test_derivative_eval(self):
- np.random.seed(1234)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0)
- pp = PPoly.from_spline(spl)
- xi = np.linspace(0, 1, 200)
- for dx in range(0, 3):
- assert_allclose(pp(xi, dx), splev(xi, spl, dx))
- def test_derivative(self):
- np.random.seed(1234)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0, k=5)
- pp = PPoly.from_spline(spl)
- xi = np.linspace(0, 1, 200)
- for dx in range(0, 10):
- assert_allclose(pp(xi, dx), pp.derivative(dx)(xi),
- err_msg="dx=%d" % (dx,))
- def test_antiderivative_of_constant(self):
- # https://github.com/scipy/scipy/issues/4216
- p = PPoly([[1.]], [0, 1])
- assert_equal(p.antiderivative().c, PPoly([[1], [0]], [0, 1]).c)
- assert_equal(p.antiderivative().x, PPoly([[1], [0]], [0, 1]).x)
- def test_antiderivative_regression_4355(self):
- # https://github.com/scipy/scipy/issues/4355
- p = PPoly([[1., 0.5]], [0, 1, 2])
- q = p.antiderivative()
- assert_equal(q.c, [[1, 0.5], [0, 1]])
- assert_equal(q.x, [0, 1, 2])
- assert_allclose(p.integrate(0, 2), 1.5)
- assert_allclose(q(2) - q(0), 1.5)
- def test_antiderivative_simple(self):
- np.random.seed(1234)
- # [ p1(x) = 3*x**2 + 2*x + 1,
- # p2(x) = 1.6875]
- c = np.array([[3, 2, 1], [0, 0, 1.6875]]).T
- # [ pp1(x) = x**3 + x**2 + x,
- # pp2(x) = 1.6875*(x - 0.25) + pp1(0.25)]
- ic = np.array([[1, 1, 1, 0], [0, 0, 1.6875, 0.328125]]).T
- # [ ppp1(x) = (1/4)*x**4 + (1/3)*x**3 + (1/2)*x**2,
- # ppp2(x) = (1.6875/2)*(x - 0.25)**2 + pp1(0.25)*x + ppp1(0.25)]
- iic = np.array([[1/4, 1/3, 1/2, 0, 0],
- [0, 0, 1.6875/2, 0.328125, 0.037434895833333336]]).T
- x = np.array([0, 0.25, 1])
- pp = PPoly(c, x)
- ipp = pp.antiderivative()
- iipp = pp.antiderivative(2)
- iipp2 = ipp.antiderivative()
- assert_allclose(ipp.x, x)
- assert_allclose(ipp.c.T, ic.T)
- assert_allclose(iipp.c.T, iic.T)
- assert_allclose(iipp2.c.T, iic.T)
- def test_antiderivative_vs_derivative(self):
- np.random.seed(1234)
- x = np.linspace(0, 1, 30)**2
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0, k=5)
- pp = PPoly.from_spline(spl)
- for dx in range(0, 10):
- ipp = pp.antiderivative(dx)
- # check that derivative is inverse op
- pp2 = ipp.derivative(dx)
- assert_allclose(pp.c, pp2.c)
- # check continuity
- for k in range(dx):
- pp2 = ipp.derivative(k)
- r = 1e-13
- endpoint = r*pp2.x[:-1] + (1 - r)*pp2.x[1:]
- assert_allclose(pp2(pp2.x[1:]), pp2(endpoint),
- rtol=1e-7, err_msg="dx=%d k=%d" % (dx, k))
- def test_antiderivative_vs_spline(self):
- np.random.seed(1234)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0, k=5)
- pp = PPoly.from_spline(spl)
- for dx in range(0, 10):
- pp2 = pp.antiderivative(dx)
- spl2 = splantider(spl, dx)
- xi = np.linspace(0, 1, 200)
- assert_allclose(pp2(xi), splev(xi, spl2),
- rtol=1e-7)
- def test_antiderivative_continuity(self):
- c = np.array([[2, 1, 2, 2], [2, 1, 3, 3]]).T
- x = np.array([0, 0.5, 1])
- p = PPoly(c, x)
- ip = p.antiderivative()
- # check continuity
- assert_allclose(ip(0.5 - 1e-9), ip(0.5 + 1e-9), rtol=1e-8)
- # check that only lowest order coefficients were changed
- p2 = ip.derivative()
- assert_allclose(p2.c, p.c)
- def test_integrate(self):
- np.random.seed(1234)
- x = np.sort(np.r_[0, np.random.rand(11), 1])
- y = np.random.rand(len(x))
- spl = splrep(x, y, s=0, k=5)
- pp = PPoly.from_spline(spl)
- a, b = 0.3, 0.9
- ig = pp.integrate(a, b)
- ipp = pp.antiderivative()
- assert_allclose(ig, ipp(b) - ipp(a))
- assert_allclose(ig, splint(a, b, spl))
- a, b = -0.3, 0.9
- ig = pp.integrate(a, b, extrapolate=True)
- assert_allclose(ig, ipp(b) - ipp(a))
- assert_(np.isnan(pp.integrate(a, b, extrapolate=False)).all())
- def test_integrate_periodic(self):
- x = np.array([1, 2, 4])
- c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]])
- P = PPoly(c, x, extrapolate='periodic')
- I = P.antiderivative()
- period_int = I(4) - I(1)
- assert_allclose(P.integrate(1, 4), period_int)
- assert_allclose(P.integrate(-10, -7), period_int)
- assert_allclose(P.integrate(-10, -4), 2 * period_int)
- assert_allclose(P.integrate(1.5, 2.5), I(2.5) - I(1.5))
- assert_allclose(P.integrate(3.5, 5), I(2) - I(1) + I(4) - I(3.5))
- assert_allclose(P.integrate(3.5 + 12, 5 + 12),
- I(2) - I(1) + I(4) - I(3.5))
- assert_allclose(P.integrate(3.5, 5 + 12),
- I(2) - I(1) + I(4) - I(3.5) + 4 * period_int)
- assert_allclose(P.integrate(0, -1), I(2) - I(3))
- assert_allclose(P.integrate(-9, -10), I(2) - I(3))
- assert_allclose(P.integrate(0, -10), I(2) - I(3) - 3 * period_int)
- def test_roots(self):
- x = np.linspace(0, 1, 31)**2
- y = np.sin(30*x)
- spl = splrep(x, y, s=0, k=3)
- pp = PPoly.from_spline(spl)
- r = pp.roots()
- r = r[(r >= 0 - 1e-15) & (r <= 1 + 1e-15)]
- assert_allclose(r, sproot(spl), atol=1e-15)
- def test_roots_idzero(self):
- # Roots for piecewise polynomials with identically zero
- # sections.
- c = np.array([[-1, 0.25], [0, 0], [-1, 0.25]]).T
- x = np.array([0, 0.4, 0.6, 1.0])
- pp = PPoly(c, x)
- assert_array_equal(pp.roots(),
- [0.25, 0.4, np.nan, 0.6 + 0.25])
- # ditto for p.solve(const) with sections identically equal const
- const = 2.
- c1 = c.copy()
- c1[1, :] += const
- pp1 = PPoly(c1, x)
- assert_array_equal(pp1.solve(const),
- [0.25, 0.4, np.nan, 0.6 + 0.25])
- def test_roots_all_zero(self):
- # test the code path for the polynomial being identically zero everywhere
- c = [[0], [0]]
- x = [0, 1]
- p = PPoly(c, x)
- assert_array_equal(p.roots(), [0, np.nan])
- assert_array_equal(p.solve(0), [0, np.nan])
- assert_array_equal(p.solve(1), [])
- c = [[0, 0], [0, 0]]
- x = [0, 1, 2]
- p = PPoly(c, x)
- assert_array_equal(p.roots(), [0, np.nan, 1, np.nan])
- assert_array_equal(p.solve(0), [0, np.nan, 1, np.nan])
- assert_array_equal(p.solve(1), [])
- def test_roots_repeated(self):
- # Check roots repeated in multiple sections are reported only
- # once.
- # [(x + 1)**2 - 1, -x**2] ; x == 0 is a repeated root
- c = np.array([[1, 0, -1], [-1, 0, 0]]).T
- x = np.array([-1, 0, 1])
- pp = PPoly(c, x)
- assert_array_equal(pp.roots(), [-2, 0])
- assert_array_equal(pp.roots(extrapolate=False), [0])
- def test_roots_discont(self):
- # Check that a discontinuity across zero is reported as root
- c = np.array([[1], [-1]]).T
- x = np.array([0, 0.5, 1])
- pp = PPoly(c, x)
- assert_array_equal(pp.roots(), [0.5])
- assert_array_equal(pp.roots(discontinuity=False), [])
- # ditto for a discontinuity across y:
- assert_array_equal(pp.solve(0.5), [0.5])
- assert_array_equal(pp.solve(0.5, discontinuity=False), [])
- assert_array_equal(pp.solve(1.5), [])
- assert_array_equal(pp.solve(1.5, discontinuity=False), [])
- def test_roots_random(self):
- # Check high-order polynomials with random coefficients
- np.random.seed(1234)
- num = 0
- for extrapolate in (True, False):
- for order in range(0, 20):
- x = np.unique(np.r_[0, 10 * np.random.rand(30), 10])
- c = 2*np.random.rand(order+1, len(x)-1, 2, 3) - 1
- pp = PPoly(c, x)
- for y in [0, np.random.random()]:
- r = pp.solve(y, discontinuity=False, extrapolate=extrapolate)
- for i in range(2):
- for j in range(3):
- rr = r[i,j]
- if rr.size > 0:
- # Check that the reported roots indeed are roots
- num += rr.size
- val = pp(rr, extrapolate=extrapolate)[:,i,j]
- cmpval = pp(rr, nu=1,
- extrapolate=extrapolate)[:,i,j]
- msg = "(%r) r = %s" % (extrapolate, repr(rr),)
- assert_allclose((val-y) / cmpval, 0, atol=1e-7,
- err_msg=msg)
- # Check that we checked a number of roots
- assert_(num > 100, repr(num))
- def test_roots_croots(self):
- # Test the complex root finding algorithm
- np.random.seed(1234)
- for k in range(1, 15):
- c = np.random.rand(k, 1, 130)
- if k == 3:
- # add a case with zero discriminant
- c[:,0,0] = 1, 2, 1
- for y in [0, np.random.random()]:
- w = np.empty(c.shape, dtype=complex)
- _ppoly._croots_poly1(c, w)
- if k == 1:
- assert_(np.isnan(w).all())
- continue
- res = 0
- cres = 0
- for i in range(k):
- res += c[i,None] * w**(k-1-i)
- cres += abs(c[i,None] * w**(k-1-i))
- with np.errstate(invalid='ignore'):
- res /= cres
- res = res.ravel()
- res = res[~np.isnan(res)]
- assert_allclose(res, 0, atol=1e-10)
- def test_extrapolate_attr(self):
- # [ 1 - x**2 ]
- c = np.array([[-1, 0, 1]]).T
- x = np.array([0, 1])
- for extrapolate in [True, False, None]:
- pp = PPoly(c, x, extrapolate=extrapolate)
- pp_d = pp.derivative()
- pp_i = pp.antiderivative()
- if extrapolate is False:
- assert_(np.isnan(pp([-0.1, 1.1])).all())
- assert_(np.isnan(pp_i([-0.1, 1.1])).all())
- assert_(np.isnan(pp_d([-0.1, 1.1])).all())
- assert_equal(pp.roots(), [1])
- else:
- assert_allclose(pp([-0.1, 1.1]), [1-0.1**2, 1-1.1**2])
- assert_(not np.isnan(pp_i([-0.1, 1.1])).any())
- assert_(not np.isnan(pp_d([-0.1, 1.1])).any())
- assert_allclose(pp.roots(), [1, -1])
- class TestBPoly(object):
- def test_simple(self):
- x = [0, 1]
- c = [[3]]
- bp = BPoly(c, x)
- assert_allclose(bp(0.1), 3.)
- def test_simple2(self):
- x = [0, 1]
- c = [[3], [1]]
- bp = BPoly(c, x) # 3*(1-x) + 1*x
- assert_allclose(bp(0.1), 3*0.9 + 1.*0.1)
- def test_simple3(self):
- x = [0, 1]
- c = [[3], [1], [4]]
- bp = BPoly(c, x) # 3 * (1-x)**2 + 2 * x (1-x) + 4 * x**2
- assert_allclose(bp(0.2),
- 3 * 0.8*0.8 + 1 * 2*0.2*0.8 + 4 * 0.2*0.2)
- def test_simple4(self):
- x = [0, 1]
- c = [[1], [1], [1], [2]]
- bp = BPoly(c, x)
- assert_allclose(bp(0.3), 0.7**3 +
- 3 * 0.7**2 * 0.3 +
- 3 * 0.7 * 0.3**2 +
- 2 * 0.3**3)
- def test_simple5(self):
- x = [0, 1]
- c = [[1], [1], [8], [2], [1]]
- bp = BPoly(c, x)
- assert_allclose(bp(0.3), 0.7**4 +
- 4 * 0.7**3 * 0.3 +
- 8 * 6 * 0.7**2 * 0.3**2 +
- 2 * 4 * 0.7 * 0.3**3 +
- 0.3**4)
- def test_periodic(self):
- x = [0, 1, 3]
- c = [[3, 0], [0, 0], [0, 2]]
- # [3*(1-x)**2, 2*((x-1)/2)**2]
- bp = BPoly(c, x, extrapolate='periodic')
- assert_allclose(bp(3.4), 3 * 0.6**2)
- assert_allclose(bp(-1.3), 2 * (0.7/2)**2)
- assert_allclose(bp(3.4, 1), -6 * 0.6)
- assert_allclose(bp(-1.3, 1), 2 * (0.7/2))
- def test_descending(self):
- np.random.seed(0)
- power = 3
- for m in [10, 20, 30]:
- x = np.sort(np.random.uniform(0, 10, m + 1))
- ca = np.random.uniform(-0.1, 0.1, size=(power + 1, m))
- # We need only to flip coefficients to get it right!
- cd = ca[::-1].copy()
- pa = BPoly(ca, x, extrapolate=True)
- pd = BPoly(cd[:, ::-1], x[::-1], extrapolate=True)
- x_test = np.random.uniform(-10, 20, 100)
- assert_allclose(pa(x_test), pd(x_test), rtol=1e-13)
- assert_allclose(pa(x_test, 1), pd(x_test, 1), rtol=1e-13)
- pa_d = pa.derivative()
- pd_d = pd.derivative()
- assert_allclose(pa_d(x_test), pd_d(x_test), rtol=1e-13)
- # Antiderivatives won't be equal because fixing continuity is
- # done in the reverse order, but surely the differences should be
- # equal.
- pa_i = pa.antiderivative()
- pd_i = pd.antiderivative()
- for a, b in np.random.uniform(-10, 20, (5, 2)):
- int_a = pa.integrate(a, b)
- int_d = pd.integrate(a, b)
- assert_allclose(int_a, int_d, rtol=1e-12)
- assert_allclose(pa_i(b) - pa_i(a), pd_i(b) - pd_i(a),
- rtol=1e-12)
- def test_multi_shape(self):
- c = np.random.rand(6, 2, 1, 2, 3)
- x = np.array([0, 0.5, 1])
- p = BPoly(c, x)
- assert_equal(p.x.shape, x.shape)
- assert_equal(p.c.shape, c.shape)
- assert_equal(p(0.3).shape, c.shape[2:])
- assert_equal(p(np.random.rand(5,6)).shape,
- (5,6)+c.shape[2:])
- dp = p.derivative()
- assert_equal(dp.c.shape, (5, 2, 1, 2, 3))
- def test_interval_length(self):
- x = [0, 2]
- c = [[3], [1], [4]]
- bp = BPoly(c, x)
- xval = 0.1
- s = xval / 2 # s = (x - xa) / (xb - xa)
- assert_allclose(bp(xval), 3 * (1-s)*(1-s) + 1 * 2*s*(1-s) + 4 * s*s)
- def test_two_intervals(self):
- x = [0, 1, 3]
- c = [[3, 0], [0, 0], [0, 2]]
- bp = BPoly(c, x) # [3*(1-x)**2, 2*((x-1)/2)**2]
- assert_allclose(bp(0.4), 3 * 0.6*0.6)
- assert_allclose(bp(1.7), 2 * (0.7/2)**2)
- def test_extrapolate_attr(self):
- x = [0, 2]
- c = [[3], [1], [4]]
- bp = BPoly(c, x)
- for extrapolate in (True, False, None):
- bp = BPoly(c, x, extrapolate=extrapolate)
- bp_d = bp.derivative()
- if extrapolate is False:
- assert_(np.isnan(bp([-0.1, 2.1])).all())
- assert_(np.isnan(bp_d([-0.1, 2.1])).all())
- else:
- assert_(not np.isnan(bp([-0.1, 2.1])).any())
- assert_(not np.isnan(bp_d([-0.1, 2.1])).any())
- class TestBPolyCalculus(object):
- def test_derivative(self):
- x = [0, 1, 3]
- c = [[3, 0], [0, 0], [0, 2]]
- bp = BPoly(c, x) # [3*(1-x)**2, 2*((x-1)/2)**2]
- bp_der = bp.derivative()
- assert_allclose(bp_der(0.4), -6*(0.6))
- assert_allclose(bp_der(1.7), 0.7)
- # derivatives in-place
- assert_allclose([bp(0.4, nu=1), bp(0.4, nu=2), bp(0.4, nu=3)],
- [-6*(1-0.4), 6., 0.])
- assert_allclose([bp(1.7, nu=1), bp(1.7, nu=2), bp(1.7, nu=3)],
- [0.7, 1., 0])
- def test_derivative_ppoly(self):
- # make sure it's consistent w/ power basis
- np.random.seed(1234)
- m, k = 5, 8 # number of intervals, order
- x = np.sort(np.random.random(m))
- c = np.random.random((k, m-1))
- bp = BPoly(c, x)
- pp = PPoly.from_bernstein_basis(bp)
- for d in range(k):
- bp = bp.derivative()
- pp = pp.derivative()
- xp = np.linspace(x[0], x[-1], 21)
- assert_allclose(bp(xp), pp(xp))
- def test_deriv_inplace(self):
- np.random.seed(1234)
- m, k = 5, 8 # number of intervals, order
- x = np.sort(np.random.random(m))
- c = np.random.random((k, m-1))
- # test both real and complex coefficients
- for cc in [c.copy(), c*(1. + 2.j)]:
- bp = BPoly(cc, x)
- xp = np.linspace(x[0], x[-1], 21)
- for i in range(k):
- assert_allclose(bp(xp, i), bp.derivative(i)(xp))
- def test_antiderivative_simple(self):
- # f(x) = x for x \in [0, 1),
- # (x-1)/2 for x \in [1, 3]
- #
- # antiderivative is then
- # F(x) = x**2 / 2 for x \in [0, 1),
- # 0.5*x*(x/2 - 1) + A for x \in [1, 3]
- # where A = 3/4 for continuity at x = 1.
- x = [0, 1, 3]
- c = [[0, 0], [1, 1]]
- bp = BPoly(c, x)
- bi = bp.antiderivative()
- xx = np.linspace(0, 3, 11)
- assert_allclose(bi(xx),
- np.where(xx < 1, xx**2 / 2.,
- 0.5 * xx * (xx/2. - 1) + 3./4),
- atol=1e-12, rtol=1e-12)
- def test_der_antider(self):
- np.random.seed(1234)
- x = np.sort(np.random.random(11))
- c = np.random.random((4, 10, 2, 3))
- bp = BPoly(c, x)
- xx = np.linspace(x[0], x[-1], 100)
- assert_allclose(bp.antiderivative().derivative()(xx),
- bp(xx), atol=1e-12, rtol=1e-12)
- def test_antider_ppoly(self):
- np.random.seed(1234)
- x = np.sort(np.random.random(11))
- c = np.random.random((4, 10, 2, 3))
- bp = BPoly(c, x)
- pp = PPoly.from_bernstein_basis(bp)
- xx = np.linspace(x[0], x[-1], 10)
- assert_allclose(bp.antiderivative(2)(xx),
- pp.antiderivative(2)(xx), atol=1e-12, rtol=1e-12)
- def test_antider_continuous(self):
- np.random.seed(1234)
- x = np.sort(np.random.random(11))
- c = np.random.random((4, 10))
- bp = BPoly(c, x).antiderivative()
- xx = bp.x[1:-1]
- assert_allclose(bp(xx - 1e-14),
- bp(xx + 1e-14), atol=1e-12, rtol=1e-12)
- def test_integrate(self):
- np.random.seed(1234)
- x = np.sort(np.random.random(11))
- c = np.random.random((4, 10))
- bp = BPoly(c, x)
- pp = PPoly.from_bernstein_basis(bp)
- assert_allclose(bp.integrate(0, 1),
- pp.integrate(0, 1), atol=1e-12, rtol=1e-12)
- def test_integrate_extrap(self):
- c = [[1]]
- x = [0, 1]
- b = BPoly(c, x)
- # default is extrapolate=True
- assert_allclose(b.integrate(0, 2), 2., atol=1e-14)
- # .integrate argument overrides self.extrapolate
- b1 = BPoly(c, x, extrapolate=False)
- assert_(np.isnan(b1.integrate(0, 2)))
- assert_allclose(b1.integrate(0, 2, extrapolate=True), 2., atol=1e-14)
- def test_integrate_periodic(self):
- x = np.array([1, 2, 4])
- c = np.array([[0., 0.], [-1., -1.], [2., -0.], [1., 2.]])
- P = BPoly.from_power_basis(PPoly(c, x), extrapolate='periodic')
- I = P.antiderivative()
- period_int = I(4) - I(1)
- assert_allclose(P.integrate(1, 4), period_int)
- assert_allclose(P.integrate(-10, -7), period_int)
- assert_allclose(P.integrate(-10, -4), 2 * period_int)
- assert_allclose(P.integrate(1.5, 2.5), I(2.5) - I(1.5))
- assert_allclose(P.integrate(3.5, 5), I(2) - I(1) + I(4) - I(3.5))
- assert_allclose(P.integrate(3.5 + 12, 5 + 12),
- I(2) - I(1) + I(4) - I(3.5))
- assert_allclose(P.integrate(3.5, 5 + 12),
- I(2) - I(1) + I(4) - I(3.5) + 4 * period_int)
- assert_allclose(P.integrate(0, -1), I(2) - I(3))
- assert_allclose(P.integrate(-9, -10), I(2) - I(3))
- assert_allclose(P.integrate(0, -10), I(2) - I(3) - 3 * period_int)
- def test_antider_neg(self):
- # .derivative(-nu) ==> .andiderivative(nu) and vice versa
- c = [[1]]
- x = [0, 1]
- b = BPoly(c, x)
- xx = np.linspace(0, 1, 21)
- assert_allclose(b.derivative(-1)(xx), b.antiderivative()(xx),
- atol=1e-12, rtol=1e-12)
- assert_allclose(b.derivative(1)(xx), b.antiderivative(-1)(xx),
- atol=1e-12, rtol=1e-12)
- class TestPolyConversions(object):
- def test_bp_from_pp(self):
- x = [0, 1, 3]
- c = [[3, 2], [1, 8], [4, 3]]
- pp = PPoly(c, x)
- bp = BPoly.from_power_basis(pp)
- pp1 = PPoly.from_bernstein_basis(bp)
- xp = [0.1, 1.4]
- assert_allclose(pp(xp), bp(xp))
- assert_allclose(pp(xp), pp1(xp))
- def test_bp_from_pp_random(self):
- np.random.seed(1234)
- m, k = 5, 8 # number of intervals, order
- x = np.sort(np.random.random(m))
- c = np.random.random((k, m-1))
- pp = PPoly(c, x)
- bp = BPoly.from_power_basis(pp)
- pp1 = PPoly.from_bernstein_basis(bp)
- xp = np.linspace(x[0], x[-1], 21)
- assert_allclose(pp(xp), bp(xp))
- assert_allclose(pp(xp), pp1(xp))
- def test_pp_from_bp(self):
- x = [0, 1, 3]
- c = [[3, 3], [1, 1], [4, 2]]
- bp = BPoly(c, x)
- pp = PPoly.from_bernstein_basis(bp)
- bp1 = BPoly.from_power_basis(pp)
- xp = [0.1, 1.4]
- assert_allclose(bp(xp), pp(xp))
- assert_allclose(bp(xp), bp1(xp))
- class TestBPolyFromDerivatives(object):
- def test_make_poly_1(self):
- c1 = BPoly._construct_from_derivatives(0, 1, [2], [3])
- assert_allclose(c1, [2., 3.])
- def test_make_poly_2(self):
- c1 = BPoly._construct_from_derivatives(0, 1, [1, 0], [1])
- assert_allclose(c1, [1., 1., 1.])
- # f'(0) = 3
- c2 = BPoly._construct_from_derivatives(0, 1, [2, 3], [1])
- assert_allclose(c2, [2., 7./2, 1.])
- # f'(1) = 3
- c3 = BPoly._construct_from_derivatives(0, 1, [2], [1, 3])
- assert_allclose(c3, [2., -0.5, 1.])
- def test_make_poly_3(self):
- # f'(0)=2, f''(0)=3
- c1 = BPoly._construct_from_derivatives(0, 1, [1, 2, 3], [4])
- assert_allclose(c1, [1., 5./3, 17./6, 4.])
- # f'(1)=2, f''(1)=3
- c2 = BPoly._construct_from_derivatives(0, 1, [1], [4, 2, 3])
- assert_allclose(c2, [1., 19./6, 10./3, 4.])
- # f'(0)=2, f'(1)=3
- c3 = BPoly._construct_from_derivatives(0, 1, [1, 2], [4, 3])
- assert_allclose(c3, [1., 5./3, 3., 4.])
- def test_make_poly_12(self):
- np.random.seed(12345)
- ya = np.r_[0, np.random.random(5)]
- yb = np.r_[0, np.random.random(5)]
- c = BPoly._construct_from_derivatives(0, 1, ya, yb)
- pp = BPoly(c[:, None], [0, 1])
- for j in range(6):
- assert_allclose([pp(0.), pp(1.)], [ya[j], yb[j]])
- pp = pp.derivative()
- def test_raise_degree(self):
- np.random.seed(12345)
- x = [0, 1]
- k, d = 8, 5
- c = np.random.random((k, 1, 2, 3, 4))
- bp = BPoly(c, x)
- c1 = BPoly._raise_degree(c, d)
- bp1 = BPoly(c1, x)
- xp = np.linspace(0, 1, 11)
- assert_allclose(bp(xp), bp1(xp))
- def test_xi_yi(self):
- assert_raises(ValueError, BPoly.from_derivatives, [0, 1], [0])
- def test_coords_order(self):
- xi = [0, 0, 1]
- yi = [[0], [0], [0]]
- assert_raises(ValueError, BPoly.from_derivatives, xi, yi)
- def test_zeros(self):
- xi = [0, 1, 2, 3]
- yi = [[0, 0], [0], [0, 0], [0, 0]] # NB: will have to raise the degree
- pp = BPoly.from_derivatives(xi, yi)
- assert_(pp.c.shape == (4, 3))
- ppd = pp.derivative()
- for xp in [0., 0.1, 1., 1.1, 1.9, 2., 2.5]:
- assert_allclose([pp(xp), ppd(xp)], [0., 0.])
- def _make_random_mk(self, m, k):
- # k derivatives at each breakpoint
- np.random.seed(1234)
- xi = np.asarray([1. * j**2 for j in range(m+1)])
- yi = [np.random.random(k) for j in range(m+1)]
- return xi, yi
- def test_random_12(self):
- m, k = 5, 12
- xi, yi = self._make_random_mk(m, k)
- pp = BPoly.from_derivatives(xi, yi)
- for order in range(k//2):
- assert_allclose(pp(xi), [yy[order] for yy in yi])
- pp = pp.derivative()
- def test_order_zero(self):
- m, k = 5, 12
- xi, yi = self._make_random_mk(m, k)
- assert_raises(ValueError, BPoly.from_derivatives,
- **dict(xi=xi, yi=yi, orders=0))
- def test_orders_too_high(self):
- m, k = 5, 12
- xi, yi = self._make_random_mk(m, k)
- pp = BPoly.from_derivatives(xi, yi, orders=2*k-1) # this is still ok
- assert_raises(ValueError, BPoly.from_derivatives, # but this is not
- **dict(xi=xi, yi=yi, orders=2*k))
- def test_orders_global(self):
- m, k = 5, 12
- xi, yi = self._make_random_mk(m, k)
- # ok, this is confusing. Local polynomials will be of the order 5
- # which means that up to the 2nd derivatives will be used at each point
- order = 5
- pp = BPoly.from_derivatives(xi, yi, orders=order)
- for j in range(order//2+1):
- assert_allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12))
- pp = pp.derivative()
- assert_(not np.allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12)))
- # now repeat with `order` being even: on each interval, it uses
- # order//2 'derivatives' @ the right-hand endpoint and
- # order//2+1 @ 'derivatives' the left-hand endpoint
- order = 6
- pp = BPoly.from_derivatives(xi, yi, orders=order)
- for j in range(order//2):
- assert_allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12))
- pp = pp.derivative()
- assert_(not np.allclose(pp(xi[1:-1] - 1e-12), pp(xi[1:-1] + 1e-12)))
- def test_orders_local(self):
- m, k = 7, 12
- xi, yi = self._make_random_mk(m, k)
- orders = [o + 1 for o in range(m)]
- for i, x in enumerate(xi[1:-1]):
- pp = BPoly.from_derivatives(xi, yi, orders=orders)
- for j in range(orders[i] // 2 + 1):
- assert_allclose(pp(x - 1e-12), pp(x + 1e-12))
- pp = pp.derivative()
- assert_(not np.allclose(pp(x - 1e-12), pp(x + 1e-12)))
- def test_yi_trailing_dims(self):
- m, k = 7, 5
- xi = np.sort(np.random.random(m+1))
- yi = np.random.random((m+1, k, 6, 7, 8))
- pp = BPoly.from_derivatives(xi, yi)
- assert_equal(pp.c.shape, (2*k, m, 6, 7, 8))
- def test_gh_5430(self):
- # At least one of these raises an error unless gh-5430 is
- # fixed. In py2k an int is implemented using a C long, so
- # which one fails depends on your system. In py3k there is only
- # one arbitrary precision integer type, so both should fail.
- orders = np.int32(1)
- p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders)
- assert_almost_equal(p(0), 0)
- orders = np.int64(1)
- p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders)
- assert_almost_equal(p(0), 0)
- orders = 1
- # This worked before; make sure it still works
- p = BPoly.from_derivatives([0, 1], [[0], [0]], orders=orders)
- assert_almost_equal(p(0), 0)
- orders = 1
- class TestNdPPoly(object):
- def test_simple_1d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5)
- x = np.linspace(0, 1, 5+1)
- xi = np.random.rand(200)
- p = NdPPoly(c, (x,))
- v1 = p((xi,))
- v2 = _ppoly_eval_1(c[:,:,None], x, xi).ravel()
- assert_allclose(v1, v2)
- def test_simple_2d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5, 6, 7)
- x = np.linspace(0, 1, 6+1)
- y = np.linspace(0, 1, 7+1)**2
- xi = np.random.rand(200)
- yi = np.random.rand(200)
- v1 = np.empty([len(xi), 1], dtype=c.dtype)
- v1.fill(np.nan)
- _ppoly.evaluate_nd(c.reshape(4*5, 6*7, 1),
- (x, y),
- np.array([4, 5], dtype=np.intc),
- np.c_[xi, yi],
- np.array([0, 0], dtype=np.intc),
- 1,
- v1)
- v1 = v1.ravel()
- v2 = _ppoly2d_eval(c, (x, y), xi, yi)
- assert_allclose(v1, v2)
- p = NdPPoly(c, (x, y))
- for nu in (None, (0, 0), (0, 1), (1, 0), (2, 3), (9, 2)):
- v1 = p(np.c_[xi, yi], nu=nu)
- v2 = _ppoly2d_eval(c, (x, y), xi, yi, nu=nu)
- assert_allclose(v1, v2, err_msg=repr(nu))
- def test_simple_3d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5, 6, 7, 8, 9)
- x = np.linspace(0, 1, 7+1)
- y = np.linspace(0, 1, 8+1)**2
- z = np.linspace(0, 1, 9+1)**3
- xi = np.random.rand(40)
- yi = np.random.rand(40)
- zi = np.random.rand(40)
- p = NdPPoly(c, (x, y, z))
- for nu in (None, (0, 0, 0), (0, 1, 0), (1, 0, 0), (2, 3, 0),
- (6, 0, 2)):
- v1 = p((xi, yi, zi), nu=nu)
- v2 = _ppoly3d_eval(c, (x, y, z), xi, yi, zi, nu=nu)
- assert_allclose(v1, v2, err_msg=repr(nu))
- def test_simple_4d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5, 6, 7, 8, 9, 10, 11)
- x = np.linspace(0, 1, 8+1)
- y = np.linspace(0, 1, 9+1)**2
- z = np.linspace(0, 1, 10+1)**3
- u = np.linspace(0, 1, 11+1)**4
- xi = np.random.rand(20)
- yi = np.random.rand(20)
- zi = np.random.rand(20)
- ui = np.random.rand(20)
- p = NdPPoly(c, (x, y, z, u))
- v1 = p((xi, yi, zi, ui))
- v2 = _ppoly4d_eval(c, (x, y, z, u), xi, yi, zi, ui)
- assert_allclose(v1, v2)
- def test_deriv_1d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5)
- x = np.linspace(0, 1, 5+1)
- p = NdPPoly(c, (x,))
- # derivative
- dp = p.derivative(nu=[1])
- p1 = PPoly(c, x)
- dp1 = p1.derivative()
- assert_allclose(dp.c, dp1.c)
- # antiderivative
- dp = p.antiderivative(nu=[2])
- p1 = PPoly(c, x)
- dp1 = p1.antiderivative(2)
- assert_allclose(dp.c, dp1.c)
- def test_deriv_3d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5, 6, 7, 8, 9)
- x = np.linspace(0, 1, 7+1)
- y = np.linspace(0, 1, 8+1)**2
- z = np.linspace(0, 1, 9+1)**3
- p = NdPPoly(c, (x, y, z))
- # differentiate vs x
- p1 = PPoly(c.transpose(0, 3, 1, 2, 4, 5), x)
- dp = p.derivative(nu=[2])
- dp1 = p1.derivative(2)
- assert_allclose(dp.c,
- dp1.c.transpose(0, 2, 3, 1, 4, 5))
- # antidifferentiate vs y
- p1 = PPoly(c.transpose(1, 4, 0, 2, 3, 5), y)
- dp = p.antiderivative(nu=[0, 1, 0])
- dp1 = p1.antiderivative(1)
- assert_allclose(dp.c,
- dp1.c.transpose(2, 0, 3, 4, 1, 5))
- # differentiate vs z
- p1 = PPoly(c.transpose(2, 5, 0, 1, 3, 4), z)
- dp = p.derivative(nu=[0, 0, 3])
- dp1 = p1.derivative(3)
- assert_allclose(dp.c,
- dp1.c.transpose(2, 3, 0, 4, 5, 1))
- def test_deriv_3d_simple(self):
- # Integrate to obtain function x y**2 z**4 / (2! 4!)
- c = np.ones((1, 1, 1, 3, 4, 5))
- x = np.linspace(0, 1, 3+1)**1
- y = np.linspace(0, 1, 4+1)**2
- z = np.linspace(0, 1, 5+1)**3
- p = NdPPoly(c, (x, y, z))
- ip = p.antiderivative((1, 0, 4))
- ip = ip.antiderivative((0, 2, 0))
- xi = np.random.rand(20)
- yi = np.random.rand(20)
- zi = np.random.rand(20)
- assert_allclose(ip((xi, yi, zi)),
- xi * yi**2 * zi**4 / (gamma(3)*gamma(5)))
- def test_integrate_2d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5, 16, 17)
- x = np.linspace(0, 1, 16+1)**1
- y = np.linspace(0, 1, 17+1)**2
- # make continuously differentiable so that nquad() has an
- # easier time
- c = c.transpose(0, 2, 1, 3)
- cx = c.reshape(c.shape[0], c.shape[1], -1).copy()
- _ppoly.fix_continuity(cx, x, 2)
- c = cx.reshape(c.shape)
- c = c.transpose(0, 2, 1, 3)
- c = c.transpose(1, 3, 0, 2)
- cx = c.reshape(c.shape[0], c.shape[1], -1).copy()
- _ppoly.fix_continuity(cx, y, 2)
- c = cx.reshape(c.shape)
- c = c.transpose(2, 0, 3, 1).copy()
- # Check integration
- p = NdPPoly(c, (x, y))
- for ranges in [[(0, 1), (0, 1)],
- [(0, 0.5), (0, 1)],
- [(0, 1), (0, 0.5)],
- [(0.3, 0.7), (0.6, 0.2)]]:
- ig = p.integrate(ranges)
- ig2, err2 = nquad(lambda x, y: p((x, y)), ranges,
- opts=[dict(epsrel=1e-5, epsabs=1e-5)]*2)
- assert_allclose(ig, ig2, rtol=1e-5, atol=1e-5,
- err_msg=repr(ranges))
- def test_integrate_1d(self):
- np.random.seed(1234)
- c = np.random.rand(4, 5, 6, 16, 17, 18)
- x = np.linspace(0, 1, 16+1)**1
- y = np.linspace(0, 1, 17+1)**2
- z = np.linspace(0, 1, 18+1)**3
- # Check 1D integration
- p = NdPPoly(c, (x, y, z))
- u = np.random.rand(200)
- v = np.random.rand(200)
- a, b = 0.2, 0.7
- px = p.integrate_1d(a, b, axis=0)
- pax = p.antiderivative((1, 0, 0))
- assert_allclose(px((u, v)), pax((b, u, v)) - pax((a, u, v)))
- py = p.integrate_1d(a, b, axis=1)
- pay = p.antiderivative((0, 1, 0))
- assert_allclose(py((u, v)), pay((u, b, v)) - pay((u, a, v)))
- pz = p.integrate_1d(a, b, axis=2)
- paz = p.antiderivative((0, 0, 1))
- assert_allclose(pz((u, v)), paz((u, v, b)) - paz((u, v, a)))
- def _ppoly_eval_1(c, x, xps):
- """Evaluate piecewise polynomial manually"""
- out = np.zeros((len(xps), c.shape[2]))
- for i, xp in enumerate(xps):
- if xp < 0 or xp > 1:
- out[i,:] = np.nan
- continue
- j = np.searchsorted(x, xp) - 1
- d = xp - x[j]
- assert_(x[j] <= xp < x[j+1])
- r = sum(c[k,j] * d**(c.shape[0]-k-1)
- for k in range(c.shape[0]))
- out[i,:] = r
- return out
- def _ppoly_eval_2(coeffs, breaks, xnew, fill=np.nan):
- """Evaluate piecewise polynomial manually (another way)"""
- a = breaks[0]
- b = breaks[-1]
- K = coeffs.shape[0]
- saveshape = np.shape(xnew)
- xnew = np.ravel(xnew)
- res = np.empty_like(xnew)
- mask = (xnew >= a) & (xnew <= b)
- res[~mask] = fill
- xx = xnew.compress(mask)
- indxs = np.searchsorted(breaks, xx)-1
- indxs = indxs.clip(0, len(breaks))
- pp = coeffs
- diff = xx - breaks.take(indxs)
- V = np.vander(diff, N=K)
- values = np.array([np.dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))])
- res[mask] = values
- res.shape = saveshape
- return res
- def _dpow(x, y, n):
- """
- d^n (x**y) / dx^n
- """
- if n < 0:
- raise ValueError("invalid derivative order")
- elif n > y:
- return 0
- else:
- return poch(y - n + 1, n) * x**(y - n)
- def _ppoly2d_eval(c, xs, xnew, ynew, nu=None):
- """
- Straightforward evaluation of 2D piecewise polynomial
- """
- if nu is None:
- nu = (0, 0)
- out = np.empty((len(xnew),), dtype=c.dtype)
- nx, ny = c.shape[:2]
- for jout, (x, y) in enumerate(zip(xnew, ynew)):
- if not ((xs[0][0] <= x <= xs[0][-1]) and
- (xs[1][0] <= y <= xs[1][-1])):
- out[jout] = np.nan
- continue
- j1 = np.searchsorted(xs[0], x) - 1
- j2 = np.searchsorted(xs[1], y) - 1
- s1 = x - xs[0][j1]
- s2 = y - xs[1][j2]
- val = 0
- for k1 in range(c.shape[0]):
- for k2 in range(c.shape[1]):
- val += (c[nx-k1-1,ny-k2-1,j1,j2]
- * _dpow(s1, k1, nu[0])
- * _dpow(s2, k2, nu[1]))
- out[jout] = val
- return out
- def _ppoly3d_eval(c, xs, xnew, ynew, znew, nu=None):
- """
- Straightforward evaluation of 3D piecewise polynomial
- """
- if nu is None:
- nu = (0, 0, 0)
- out = np.empty((len(xnew),), dtype=c.dtype)
- nx, ny, nz = c.shape[:3]
- for jout, (x, y, z) in enumerate(zip(xnew, ynew, znew)):
- if not ((xs[0][0] <= x <= xs[0][-1]) and
- (xs[1][0] <= y <= xs[1][-1]) and
- (xs[2][0] <= z <= xs[2][-1])):
- out[jout] = np.nan
- continue
- j1 = np.searchsorted(xs[0], x) - 1
- j2 = np.searchsorted(xs[1], y) - 1
- j3 = np.searchsorted(xs[2], z) - 1
- s1 = x - xs[0][j1]
- s2 = y - xs[1][j2]
- s3 = z - xs[2][j3]
- val = 0
- for k1 in range(c.shape[0]):
- for k2 in range(c.shape[1]):
- for k3 in range(c.shape[2]):
- val += (c[nx-k1-1,ny-k2-1,nz-k3-1,j1,j2,j3]
- * _dpow(s1, k1, nu[0])
- * _dpow(s2, k2, nu[1])
- * _dpow(s3, k3, nu[2]))
- out[jout] = val
- return out
- def _ppoly4d_eval(c, xs, xnew, ynew, znew, unew, nu=None):
- """
- Straightforward evaluation of 4D piecewise polynomial
- """
- if nu is None:
- nu = (0, 0, 0, 0)
- out = np.empty((len(xnew),), dtype=c.dtype)
- mx, my, mz, mu = c.shape[:4]
- for jout, (x, y, z, u) in enumerate(zip(xnew, ynew, znew, unew)):
- if not ((xs[0][0] <= x <= xs[0][-1]) and
- (xs[1][0] <= y <= xs[1][-1]) and
- (xs[2][0] <= z <= xs[2][-1]) and
- (xs[3][0] <= u <= xs[3][-1])):
- out[jout] = np.nan
- continue
- j1 = np.searchsorted(xs[0], x) - 1
- j2 = np.searchsorted(xs[1], y) - 1
- j3 = np.searchsorted(xs[2], z) - 1
- j4 = np.searchsorted(xs[3], u) - 1
- s1 = x - xs[0][j1]
- s2 = y - xs[1][j2]
- s3 = z - xs[2][j3]
- s4 = u - xs[3][j4]
- val = 0
- for k1 in range(c.shape[0]):
- for k2 in range(c.shape[1]):
- for k3 in range(c.shape[2]):
- for k4 in range(c.shape[3]):
- val += (c[mx-k1-1,my-k2-1,mz-k3-1,mu-k4-1,j1,j2,j3,j4]
- * _dpow(s1, k1, nu[0])
- * _dpow(s2, k2, nu[1])
- * _dpow(s3, k3, nu[2])
- * _dpow(s4, k4, nu[3]))
- out[jout] = val
- return out
- class TestRegularGridInterpolator(object):
- def _get_sample_4d(self):
- # create a 4d grid of 3 points in each dimension
- points = [(0., .5, 1.)] * 4
- values = np.asarray([0., .5, 1.])
- values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
- values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
- values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
- values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
- values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
- return points, values
- def _get_sample_4d_2(self):
- # create another 4d grid of 3 points in each dimension
- points = [(0., .5, 1.)] * 2 + [(0., 5., 10.)] * 2
- values = np.asarray([0., .5, 1.])
- values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
- values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
- values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
- values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
- values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
- return points, values
- def test_list_input(self):
- points, values = self._get_sample_4d()
- sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
- [0.5, 0.5, .5, .5]])
- for method in ['linear', 'nearest']:
- interp = RegularGridInterpolator(points,
- values.tolist(),
- method=method)
- v1 = interp(sample.tolist())
- interp = RegularGridInterpolator(points,
- values,
- method=method)
- v2 = interp(sample)
- assert_allclose(v1, v2)
- def test_complex(self):
- points, values = self._get_sample_4d()
- values = values - 2j*values
- sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
- [0.5, 0.5, .5, .5]])
- for method in ['linear', 'nearest']:
- interp = RegularGridInterpolator(points, values,
- method=method)
- rinterp = RegularGridInterpolator(points, values.real,
- method=method)
- iinterp = RegularGridInterpolator(points, values.imag,
- method=method)
- v1 = interp(sample)
- v2 = rinterp(sample) + 1j*iinterp(sample)
- assert_allclose(v1, v2)
- def test_linear_xi1d(self):
- points, values = self._get_sample_4d_2()
- interp = RegularGridInterpolator(points, values)
- sample = np.asarray([0.1, 0.1, 10., 9.])
- wanted = 1001.1
- assert_array_almost_equal(interp(sample), wanted)
- def test_linear_xi3d(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values)
- sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
- [0.5, 0.5, .5, .5]])
- wanted = np.asarray([1001.1, 846.2, 555.5])
- assert_array_almost_equal(interp(sample), wanted)
- def test_nearest(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values, method="nearest")
- sample = np.asarray([0.1, 0.1, .9, .9])
- wanted = 1100.
- assert_array_almost_equal(interp(sample), wanted)
- sample = np.asarray([0.1, 0.1, 0.1, 0.1])
- wanted = 0.
- assert_array_almost_equal(interp(sample), wanted)
- sample = np.asarray([0., 0., 0., 0.])
- wanted = 0.
- assert_array_almost_equal(interp(sample), wanted)
- sample = np.asarray([1., 1., 1., 1.])
- wanted = 1111.
- assert_array_almost_equal(interp(sample), wanted)
- sample = np.asarray([0.1, 0.4, 0.6, 0.9])
- wanted = 1055.
- assert_array_almost_equal(interp(sample), wanted)
- def test_linear_edges(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values)
- sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.]])
- wanted = np.asarray([0., 1111.])
- assert_array_almost_equal(interp(sample), wanted)
- def test_valid_create(self):
- # create a 2d grid of 3 points in each dimension
- points = [(0., .5, 1.), (0., 1., .5)]
- values = np.asarray([0., .5, 1.])
- values0 = values[:, np.newaxis]
- values1 = values[np.newaxis, :]
- values = (values0 + values1 * 10)
- assert_raises(ValueError, RegularGridInterpolator, points, values)
- points = [((0., .5, 1.), ), (0., .5, 1.)]
- assert_raises(ValueError, RegularGridInterpolator, points, values)
- points = [(0., .5, .75, 1.), (0., .5, 1.)]
- assert_raises(ValueError, RegularGridInterpolator, points, values)
- points = [(0., .5, 1.), (0., .5, 1.), (0., .5, 1.)]
- assert_raises(ValueError, RegularGridInterpolator, points, values)
- points = [(0., .5, 1.), (0., .5, 1.)]
- assert_raises(ValueError, RegularGridInterpolator, points, values,
- method="undefmethod")
- def test_valid_call(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values)
- sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.]])
- assert_raises(ValueError, interp, sample, "undefmethod")
- sample = np.asarray([[0., 0., 0.], [1., 1., 1.]])
- assert_raises(ValueError, interp, sample)
- sample = np.asarray([[0., 0., 0., 0.], [1., 1., 1., 1.1]])
- assert_raises(ValueError, interp, sample)
- def test_out_of_bounds_extrap(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values, bounds_error=False,
- fill_value=None)
- sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1],
- [21, 2.1, -1.1, -11], [2.1, 2.1, -1.1, -1.1]])
- wanted = np.asarray([0., 1111., 11., 11.])
- assert_array_almost_equal(interp(sample, method="nearest"), wanted)
- wanted = np.asarray([-111.1, 1222.1, -11068., -1186.9])
- assert_array_almost_equal(interp(sample, method="linear"), wanted)
- def test_out_of_bounds_extrap2(self):
- points, values = self._get_sample_4d_2()
- interp = RegularGridInterpolator(points, values, bounds_error=False,
- fill_value=None)
- sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1],
- [21, 2.1, -1.1, -11], [2.1, 2.1, -1.1, -1.1]])
- wanted = np.asarray([0., 11., 11., 11.])
- assert_array_almost_equal(interp(sample, method="nearest"), wanted)
- wanted = np.asarray([-12.1, 133.1, -1069., -97.9])
- assert_array_almost_equal(interp(sample, method="linear"), wanted)
- def test_out_of_bounds_fill(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values, bounds_error=False,
- fill_value=np.nan)
- sample = np.asarray([[-.1, -.1, -.1, -.1], [1.1, 1.1, 1.1, 1.1],
- [2.1, 2.1, -1.1, -1.1]])
- wanted = np.asarray([np.nan, np.nan, np.nan])
- assert_array_almost_equal(interp(sample, method="nearest"), wanted)
- assert_array_almost_equal(interp(sample, method="linear"), wanted)
- sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
- [0.5, 0.5, .5, .5]])
- wanted = np.asarray([1001.1, 846.2, 555.5])
- assert_array_almost_equal(interp(sample), wanted)
- def test_nearest_compare_qhull(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values, method="nearest")
- points_qhull = itertools.product(*points)
- points_qhull = [p for p in points_qhull]
- points_qhull = np.asarray(points_qhull)
- values_qhull = values.reshape(-1)
- interp_qhull = NearestNDInterpolator(points_qhull, values_qhull)
- sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
- [0.5, 0.5, .5, .5]])
- assert_array_almost_equal(interp(sample), interp_qhull(sample))
- def test_linear_compare_qhull(self):
- points, values = self._get_sample_4d()
- interp = RegularGridInterpolator(points, values)
- points_qhull = itertools.product(*points)
- points_qhull = [p for p in points_qhull]
- points_qhull = np.asarray(points_qhull)
- values_qhull = values.reshape(-1)
- interp_qhull = LinearNDInterpolator(points_qhull, values_qhull)
- sample = np.asarray([[0.1, 0.1, 1., .9], [0.2, 0.1, .45, .8],
- [0.5, 0.5, .5, .5]])
- assert_array_almost_equal(interp(sample), interp_qhull(sample))
- def test_duck_typed_values(self):
- x = np.linspace(0, 2, 5)
- y = np.linspace(0, 1, 7)
- values = MyValue((5, 7))
- for method in ('nearest', 'linear'):
- interp = RegularGridInterpolator((x, y), values,
- method=method)
- v1 = interp([0.4, 0.7])
- interp = RegularGridInterpolator((x, y), values._v,
- method=method)
- v2 = interp([0.4, 0.7])
- assert_allclose(v1, v2)
- def test_invalid_fill_value(self):
- np.random.seed(1234)
- x = np.linspace(0, 2, 5)
- y = np.linspace(0, 1, 7)
- values = np.random.rand(5, 7)
- # integers can be cast to floats
- RegularGridInterpolator((x, y), values, fill_value=1)
- # complex values cannot
- assert_raises(ValueError, RegularGridInterpolator,
- (x, y), values, fill_value=1+2j)
- def test_fillvalue_type(self):
- # from #3703; test that interpolator object construction succeeds
- values = np.ones((10, 20, 30), dtype='>f4')
- points = [np.arange(n) for n in values.shape]
- xi = [(1, 1, 1)]
- interpolator = RegularGridInterpolator(points, values)
- interpolator = RegularGridInterpolator(points, values, fill_value=0.)
- class MyValue(object):
- """
- Minimal indexable object
- """
- def __init__(self, shape):
- self.ndim = 2
- self.shape = shape
- self._v = np.arange(np.prod(shape)).reshape(shape)
- def __getitem__(self, idx):
- return self._v[idx]
- def __array_interface__(self):
- return None
- def __array__(self):
- raise RuntimeError("No array representation")
- class TestInterpN(object):
- def _sample_2d_data(self):
- x = np.arange(1, 6)
- x = np.array([.5, 2., 3., 4., 5.5])
- y = np.arange(1, 6)
- y = np.array([.5, 2., 3., 4., 5.5])
- z = np.array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
- return x, y, z
- def test_spline_2d(self):
- x, y, z = self._sample_2d_data()
- lut = RectBivariateSpline(x, y, z)
- xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
- [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
- assert_array_almost_equal(interpn((x, y), z, xi, method="splinef2d"),
- lut.ev(xi[:, 0], xi[:, 1]))
- def test_list_input(self):
- x, y, z = self._sample_2d_data()
- xi = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
- [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
- for method in ['nearest', 'linear', 'splinef2d']:
- v1 = interpn((x, y), z, xi, method=method)
- v2 = interpn((x.tolist(), y.tolist()), z.tolist(),
- xi.tolist(), method=method)
- assert_allclose(v1, v2, err_msg=method)
- def test_spline_2d_outofbounds(self):
- x = np.array([.5, 2., 3., 4., 5.5])
- y = np.array([.5, 2., 3., 4., 5.5])
- z = np.array([[1, 2, 1, 2, 1], [1, 2, 1, 2, 1], [1, 2, 3, 2, 1],
- [1, 2, 2, 2, 1], [1, 2, 1, 2, 1]])
- lut = RectBivariateSpline(x, y, z)
- xi = np.array([[1, 2.3, 6.3, 0.5, 3.3, 1.2, 3],
- [1, 3.3, 1.2, -4.0, 5.0, 1.0, 3]]).T
- actual = interpn((x, y), z, xi, method="splinef2d",
- bounds_error=False, fill_value=999.99)
- expected = lut.ev(xi[:, 0], xi[:, 1])
- expected[2:4] = 999.99
- assert_array_almost_equal(actual, expected)
- # no extrapolation for splinef2d
- assert_raises(ValueError, interpn, (x, y), z, xi, method="splinef2d",
- bounds_error=False, fill_value=None)
- def _sample_4d_data(self):
- points = [(0., .5, 1.)] * 2 + [(0., 5., 10.)] * 2
- values = np.asarray([0., .5, 1.])
- values0 = values[:, np.newaxis, np.newaxis, np.newaxis]
- values1 = values[np.newaxis, :, np.newaxis, np.newaxis]
- values2 = values[np.newaxis, np.newaxis, :, np.newaxis]
- values3 = values[np.newaxis, np.newaxis, np.newaxis, :]
- values = (values0 + values1 * 10 + values2 * 100 + values3 * 1000)
- return points, values
- def test_linear_4d(self):
- # create a 4d grid of 3 points in each dimension
- points, values = self._sample_4d_data()
- interp_rg = RegularGridInterpolator(points, values)
- sample = np.asarray([[0.1, 0.1, 10., 9.]])
- wanted = interpn(points, values, sample, method="linear")
- assert_array_almost_equal(interp_rg(sample), wanted)
- def test_4d_linear_outofbounds(self):
- # create a 4d grid of 3 points in each dimension
- points, values = self._sample_4d_data()
- sample = np.asarray([[0.1, -0.1, 10.1, 9.]])
- wanted = 999.99
- actual = interpn(points, values, sample, method="linear",
- bounds_error=False, fill_value=999.99)
- assert_array_almost_equal(actual, wanted)
- def test_nearest_4d(self):
- # create a 4d grid of 3 points in each dimension
- points, values = self._sample_4d_data()
- interp_rg = RegularGridInterpolator(points, values, method="nearest")
- sample = np.asarray([[0.1, 0.1, 10., 9.]])
- wanted = interpn(points, values, sample, method="nearest")
- assert_array_almost_equal(interp_rg(sample), wanted)
- def test_4d_nearest_outofbounds(self):
- # create a 4d grid of 3 points in each dimension
- points, values = self._sample_4d_data()
- sample = np.asarray([[0.1, -0.1, 10.1, 9.]])
- wanted = 999.99
- actual = interpn(points, values, sample, method="nearest",
- bounds_error=False, fill_value=999.99)
- assert_array_almost_equal(actual, wanted)
- def test_xi_1d(self):
- # verify that 1D xi works as expected
- points, values = self._sample_4d_data()
- sample = np.asarray([0.1, 0.1, 10., 9.])
- v1 = interpn(points, values, sample, bounds_error=False)
- v2 = interpn(points, values, sample[None,:], bounds_error=False)
- assert_allclose(v1, v2)
- def test_xi_nd(self):
- # verify that higher-d xi works as expected
- points, values = self._sample_4d_data()
- np.random.seed(1234)
- sample = np.random.rand(2, 3, 4)
- v1 = interpn(points, values, sample, method='nearest',
- bounds_error=False)
- assert_equal(v1.shape, (2, 3))
- v2 = interpn(points, values, sample.reshape(-1, 4),
- method='nearest', bounds_error=False)
- assert_allclose(v1, v2.reshape(v1.shape))
- def test_xi_broadcast(self):
- # verify that the interpolators broadcast xi
- x, y, values = self._sample_2d_data()
- points = (x, y)
- xi = np.linspace(0, 1, 2)
- yi = np.linspace(0, 3, 3)
- for method in ['nearest', 'linear', 'splinef2d']:
- sample = (xi[:,None], yi[None,:])
- v1 = interpn(points, values, sample, method=method,
- bounds_error=False)
- assert_equal(v1.shape, (2, 3))
- xx, yy = np.meshgrid(xi, yi)
- sample = np.c_[xx.T.ravel(), yy.T.ravel()]
- v2 = interpn(points, values, sample,
- method=method, bounds_error=False)
- assert_allclose(v1, v2.reshape(v1.shape))
- def test_nonscalar_values(self):
- # Verify that non-scalar valued values also works
- points, values = self._sample_4d_data()
- np.random.seed(1234)
- values = np.random.rand(3, 3, 3, 3, 6)
- sample = np.random.rand(7, 11, 4)
- for method in ['nearest', 'linear']:
- v = interpn(points, values, sample, method=method,
- bounds_error=False)
- assert_equal(v.shape, (7, 11, 6), err_msg=method)
- vs = [interpn(points, values[...,j], sample, method=method,
- bounds_error=False)
- for j in range(6)]
- v2 = np.array(vs).transpose(1, 2, 0)
- assert_allclose(v, v2, err_msg=method)
- # Vector-valued splines supported with fitpack
- assert_raises(ValueError, interpn, points, values, sample,
- method='splinef2d')
- def test_complex(self):
- x, y, values = self._sample_2d_data()
- points = (x, y)
- values = values - 2j*values
- sample = np.array([[1, 2.3, 5.3, 0.5, 3.3, 1.2, 3],
- [1, 3.3, 1.2, 4.0, 5.0, 1.0, 3]]).T
- for method in ['linear', 'nearest']:
- v1 = interpn(points, values, sample, method=method)
- v2r = interpn(points, values.real, sample, method=method)
- v2i = interpn(points, values.imag, sample, method=method)
- v2 = v2r + 1j*v2i
- assert_allclose(v1, v2)
- # Complex-valued data not supported by spline2fd
- _assert_warns(np.ComplexWarning, interpn, points, values,
- sample, method='splinef2d')
- def test_duck_typed_values(self):
- x = np.linspace(0, 2, 5)
- y = np.linspace(0, 1, 7)
- values = MyValue((5, 7))
- for method in ('nearest', 'linear'):
- v1 = interpn((x, y), values, [0.4, 0.7], method=method)
- v2 = interpn((x, y), values._v, [0.4, 0.7], method=method)
- assert_allclose(v1, v2)
- def test_matrix_input(self):
- x = np.linspace(0, 2, 5)
- y = np.linspace(0, 1, 7)
- values = np.matrix(np.random.rand(5, 7))
- sample = np.random.rand(3, 7, 2)
- for method in ('nearest', 'linear', 'splinef2d'):
- v1 = interpn((x, y), values, sample, method=method)
- v2 = interpn((x, y), np.asarray(values), sample, method=method)
- assert_allclose(v1, np.asmatrix(v2))
|