123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431 |
- #
- # Author: Pearu Peterson, March 2002
- #
- # additions by Travis Oliphant, March 2002
- # additions by Eric Jones, June 2002
- # additions by Johannes Loehnert, June 2006
- # additions by Bart Vandereycken, June 2006
- # additions by Andrew D Straw, May 2007
- # additions by Tiziano Zito, November 2008
- #
- # April 2010: Functions for LU, QR, SVD, Schur and Cholesky decompositions were
- # moved to their own files. Still in this file are functions for eigenstuff
- # and for the Hessenberg form.
- from __future__ import division, print_function, absolute_import
- __all__ = ['eig', 'eigvals', 'eigh', 'eigvalsh',
- 'eig_banded', 'eigvals_banded',
- 'eigh_tridiagonal', 'eigvalsh_tridiagonal', 'hessenberg', 'cdf2rdf']
- import numpy
- from numpy import (array, isfinite, inexact, nonzero, iscomplexobj, cast,
- flatnonzero, conj, asarray, argsort, empty, newaxis,
- argwhere, iscomplex, eye, zeros, einsum)
- # Local imports
- from scipy._lib.six import xrange
- from scipy._lib._util import _asarray_validated
- from scipy._lib.six import string_types
- from .misc import LinAlgError, _datacopied, norm
- from .lapack import get_lapack_funcs, _compute_lwork
- _I = cast['F'](1j)
- def _make_complex_eigvecs(w, vin, dtype):
- """
- Produce complex-valued eigenvectors from LAPACK DGGEV real-valued output
- """
- # - see LAPACK man page DGGEV at ALPHAI
- v = numpy.array(vin, dtype=dtype)
- m = (w.imag > 0)
- m[:-1] |= (w.imag[1:] < 0) # workaround for LAPACK bug, cf. ticket #709
- for i in flatnonzero(m):
- v.imag[:, i] = vin[:, i+1]
- conj(v[:, i], v[:, i+1])
- return v
- def _make_eigvals(alpha, beta, homogeneous_eigvals):
- if homogeneous_eigvals:
- if beta is None:
- return numpy.vstack((alpha, numpy.ones_like(alpha)))
- else:
- return numpy.vstack((alpha, beta))
- else:
- if beta is None:
- return alpha
- else:
- w = numpy.empty_like(alpha)
- alpha_zero = (alpha == 0)
- beta_zero = (beta == 0)
- beta_nonzero = ~beta_zero
- w[beta_nonzero] = alpha[beta_nonzero]/beta[beta_nonzero]
- # Use numpy.inf for complex values too since
- # 1/numpy.inf = 0, i.e. it correctly behaves as projective
- # infinity.
- w[~alpha_zero & beta_zero] = numpy.inf
- if numpy.all(alpha.imag == 0):
- w[alpha_zero & beta_zero] = numpy.nan
- else:
- w[alpha_zero & beta_zero] = complex(numpy.nan, numpy.nan)
- return w
- def _geneig(a1, b1, left, right, overwrite_a, overwrite_b,
- homogeneous_eigvals):
- ggev, = get_lapack_funcs(('ggev',), (a1, b1))
- cvl, cvr = left, right
- res = ggev(a1, b1, lwork=-1)
- lwork = res[-2][0].real.astype(numpy.int)
- if ggev.typecode in 'cz':
- alpha, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork,
- overwrite_a, overwrite_b)
- w = _make_eigvals(alpha, beta, homogeneous_eigvals)
- else:
- alphar, alphai, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr,
- lwork, overwrite_a,
- overwrite_b)
- alpha = alphar + _I * alphai
- w = _make_eigvals(alpha, beta, homogeneous_eigvals)
- _check_info(info, 'generalized eig algorithm (ggev)')
- only_real = numpy.all(w.imag == 0.0)
- if not (ggev.typecode in 'cz' or only_real):
- t = w.dtype.char
- if left:
- vl = _make_complex_eigvecs(w, vl, t)
- if right:
- vr = _make_complex_eigvecs(w, vr, t)
- # the eigenvectors returned by the lapack function are NOT normalized
- for i in xrange(vr.shape[0]):
- if right:
- vr[:, i] /= norm(vr[:, i])
- if left:
- vl[:, i] /= norm(vl[:, i])
- if not (left or right):
- return w
- if left:
- if right:
- return w, vl, vr
- return w, vl
- return w, vr
- def eig(a, b=None, left=False, right=True, overwrite_a=False,
- overwrite_b=False, check_finite=True, homogeneous_eigvals=False):
- """
- Solve an ordinary or generalized eigenvalue problem of a square matrix.
- Find eigenvalues w and right or left eigenvectors of a general matrix::
- a vr[:,i] = w[i] b vr[:,i]
- a.H vl[:,i] = w[i].conj() b.H vl[:,i]
- where ``.H`` is the Hermitian conjugation.
- Parameters
- ----------
- a : (M, M) array_like
- A complex or real matrix whose eigenvalues and eigenvectors
- will be computed.
- b : (M, M) array_like, optional
- Right-hand side matrix in a generalized eigenvalue problem.
- Default is None, identity matrix is assumed.
- left : bool, optional
- Whether to calculate and return left eigenvectors. Default is False.
- right : bool, optional
- Whether to calculate and return right eigenvectors. Default is True.
- overwrite_a : bool, optional
- Whether to overwrite `a`; may improve performance. Default is False.
- overwrite_b : bool, optional
- Whether to overwrite `b`; may improve performance. Default is False.
- check_finite : bool, optional
- Whether to check that the input matrices contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- homogeneous_eigvals : bool, optional
- If True, return the eigenvalues in homogeneous coordinates.
- In this case ``w`` is a (2, M) array so that::
- w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
- Default is False.
- Returns
- -------
- w : (M,) or (2, M) double or complex ndarray
- The eigenvalues, each repeated according to its
- multiplicity. The shape is (M,) unless
- ``homogeneous_eigvals=True``.
- vl : (M, M) double or complex ndarray
- The normalized left eigenvector corresponding to the eigenvalue
- ``w[i]`` is the column vl[:,i]. Only returned if ``left=True``.
- vr : (M, M) double or complex ndarray
- The normalized right eigenvector corresponding to the eigenvalue
- ``w[i]`` is the column ``vr[:,i]``. Only returned if ``right=True``.
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge.
- See Also
- --------
- eigvals : eigenvalues of general arrays
- eigh : Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
- eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
- band matrices
- eigh_tridiagonal : eigenvalues and right eiegenvectors for
- symmetric/Hermitian tridiagonal matrices
- Examples
- --------
- >>> from scipy import linalg
- >>> a = np.array([[0., -1.], [1., 0.]])
- >>> linalg.eigvals(a)
- array([0.+1.j, 0.-1.j])
- >>> b = np.array([[0., 1.], [1., 1.]])
- >>> linalg.eigvals(a, b)
- array([ 1.+0.j, -1.+0.j])
- >>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
- >>> linalg.eigvals(a, homogeneous_eigvals=True)
- array([[3.+0.j, 8.+0.j, 7.+0.j],
- [1.+0.j, 1.+0.j, 1.+0.j]])
- >>> a = np.array([[0., -1.], [1., 0.]])
- >>> linalg.eigvals(a) == linalg.eig(a)[0]
- array([ True, True])
- >>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector
- array([[-0.70710678+0.j , -0.70710678-0.j ],
- [-0. +0.70710678j, -0. -0.70710678j]])
- >>> linalg.eig(a, left=False, right=True)[1] # normalized right eigenvector
- array([[0.70710678+0.j , 0.70710678-0.j ],
- [0. -0.70710678j, 0. +0.70710678j]])
- """
- a1 = _asarray_validated(a, check_finite=check_finite)
- if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
- raise ValueError('expected square matrix')
- overwrite_a = overwrite_a or (_datacopied(a1, a))
- if b is not None:
- b1 = _asarray_validated(b, check_finite=check_finite)
- overwrite_b = overwrite_b or _datacopied(b1, b)
- if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
- raise ValueError('expected square matrix')
- if b1.shape != a1.shape:
- raise ValueError('a and b must have the same shape')
- return _geneig(a1, b1, left, right, overwrite_a, overwrite_b,
- homogeneous_eigvals)
- geev, geev_lwork = get_lapack_funcs(('geev', 'geev_lwork'), (a1,))
- compute_vl, compute_vr = left, right
- lwork = _compute_lwork(geev_lwork, a1.shape[0],
- compute_vl=compute_vl,
- compute_vr=compute_vr)
- if geev.typecode in 'cz':
- w, vl, vr, info = geev(a1, lwork=lwork,
- compute_vl=compute_vl,
- compute_vr=compute_vr,
- overwrite_a=overwrite_a)
- w = _make_eigvals(w, None, homogeneous_eigvals)
- else:
- wr, wi, vl, vr, info = geev(a1, lwork=lwork,
- compute_vl=compute_vl,
- compute_vr=compute_vr,
- overwrite_a=overwrite_a)
- t = {'f': 'F', 'd': 'D'}[wr.dtype.char]
- w = wr + _I * wi
- w = _make_eigvals(w, None, homogeneous_eigvals)
- _check_info(info, 'eig algorithm (geev)',
- positive='did not converge (only eigenvalues '
- 'with order >= %d have converged)')
- only_real = numpy.all(w.imag == 0.0)
- if not (geev.typecode in 'cz' or only_real):
- t = w.dtype.char
- if left:
- vl = _make_complex_eigvecs(w, vl, t)
- if right:
- vr = _make_complex_eigvecs(w, vr, t)
- if not (left or right):
- return w
- if left:
- if right:
- return w, vl, vr
- return w, vl
- return w, vr
- def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False,
- overwrite_b=False, turbo=True, eigvals=None, type=1,
- check_finite=True):
- """
- Solve an ordinary or generalized eigenvalue problem for a complex
- Hermitian or real symmetric matrix.
- Find eigenvalues w and optionally eigenvectors v of matrix `a`, where
- `b` is positive definite::
- a v[:,i] = w[i] b v[:,i]
- v[i,:].conj() a v[:,i] = w[i]
- v[i,:].conj() b v[:,i] = 1
- Parameters
- ----------
- a : (M, M) array_like
- A complex Hermitian or real symmetric matrix whose eigenvalues and
- eigenvectors will be computed.
- b : (M, M) array_like, optional
- A complex Hermitian or real symmetric definite positive matrix in.
- If omitted, identity matrix is assumed.
- lower : bool, optional
- Whether the pertinent array data is taken from the lower or upper
- triangle of `a`. (Default: lower)
- eigvals_only : bool, optional
- Whether to calculate only eigenvalues and no eigenvectors.
- (Default: both are calculated)
- turbo : bool, optional
- Use divide and conquer algorithm (faster but expensive in memory,
- only for generalized eigenvalue problem and if eigvals=None)
- eigvals : tuple (lo, hi), optional
- Indexes of the smallest and largest (in ascending order) eigenvalues
- and corresponding eigenvectors to be returned: 0 <= lo <= hi <= M-1.
- If omitted, all eigenvalues and eigenvectors are returned.
- type : int, optional
- Specifies the problem type to be solved:
- type = 1: a v[:,i] = w[i] b v[:,i]
- type = 2: a b v[:,i] = w[i] v[:,i]
- type = 3: b a v[:,i] = w[i] v[:,i]
- overwrite_a : bool, optional
- Whether to overwrite data in `a` (may improve performance)
- overwrite_b : bool, optional
- Whether to overwrite data in `b` (may improve performance)
- check_finite : bool, optional
- Whether to check that the input matrices contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- w : (N,) float ndarray
- The N (1<=N<=M) selected eigenvalues, in ascending order, each
- repeated according to its multiplicity.
- v : (M, N) complex ndarray
- (if eigvals_only == False)
- The normalized selected eigenvector corresponding to the
- eigenvalue w[i] is the column v[:,i].
- Normalization:
- type 1 and 3: v.conj() a v = w
- type 2: inv(v).conj() a inv(v) = w
- type = 1 or 2: v.conj() b v = I
- type = 3: v.conj() inv(b) v = I
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge,
- an error occurred, or b matrix is not definite positive. Note that
- if input matrices are not symmetric or hermitian, no error is reported
- but results will be wrong.
- See Also
- --------
- eigvalsh : eigenvalues of symmetric or Hermitian arrays
- eig : eigenvalues and right eigenvectors for non-symmetric arrays
- eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
- eigh_tridiagonal : eigenvalues and right eiegenvectors for
- symmetric/Hermitian tridiagonal matrices
- Notes
- -----
- This function does not check the input array for being hermitian/symmetric
- in order to allow for representing arrays with only their upper/lower
- triangular parts.
- Examples
- --------
- >>> from scipy.linalg import eigh
- >>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
- >>> w, v = eigh(A)
- >>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
- True
- """
- a1 = _asarray_validated(a, check_finite=check_finite)
- if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
- raise ValueError('expected square matrix')
- overwrite_a = overwrite_a or (_datacopied(a1, a))
- if iscomplexobj(a1):
- cplx = True
- else:
- cplx = False
- if b is not None:
- b1 = _asarray_validated(b, check_finite=check_finite)
- overwrite_b = overwrite_b or _datacopied(b1, b)
- if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
- raise ValueError('expected square matrix')
- if b1.shape != a1.shape:
- raise ValueError("wrong b dimensions %s, should "
- "be %s" % (str(b1.shape), str(a1.shape)))
- if iscomplexobj(b1):
- cplx = True
- else:
- cplx = cplx or False
- else:
- b1 = None
- # Set job for fortran routines
- _job = (eigvals_only and 'N') or 'V'
- # port eigenvalue range from python to fortran convention
- if eigvals is not None:
- lo, hi = eigvals
- if lo < 0 or hi >= a1.shape[0]:
- raise ValueError('The eigenvalue range specified is not valid.\n'
- 'Valid range is [%s,%s]' % (0, a1.shape[0]-1))
- lo += 1
- hi += 1
- eigvals = (lo, hi)
- # set lower
- if lower:
- uplo = 'L'
- else:
- uplo = 'U'
- # fix prefix for lapack routines
- if cplx:
- pfx = 'he'
- else:
- pfx = 'sy'
- # Standard Eigenvalue Problem
- # Use '*evr' routines
- # FIXME: implement calculation of optimal lwork
- # for all lapack routines
- if b1 is None:
- driver = pfx+'evr'
- (evr,) = get_lapack_funcs((driver,), (a1,))
- if eigvals is None:
- w, v, info = evr(a1, uplo=uplo, jobz=_job, range="A", il=1,
- iu=a1.shape[0], overwrite_a=overwrite_a)
- else:
- (lo, hi) = eigvals
- w_tot, v, info = evr(a1, uplo=uplo, jobz=_job, range="I",
- il=lo, iu=hi, overwrite_a=overwrite_a)
- w = w_tot[0:hi-lo+1]
- # Generalized Eigenvalue Problem
- else:
- # Use '*gvx' routines if range is specified
- if eigvals is not None:
- driver = pfx+'gvx'
- (gvx,) = get_lapack_funcs((driver,), (a1, b1))
- (lo, hi) = eigvals
- w_tot, v, ifail, info = gvx(a1, b1, uplo=uplo, iu=hi,
- itype=type, jobz=_job, il=lo,
- overwrite_a=overwrite_a,
- overwrite_b=overwrite_b)
- w = w_tot[0:hi-lo+1]
- # Use '*gvd' routine if turbo is on and no eigvals are specified
- elif turbo:
- driver = pfx+'gvd'
- (gvd,) = get_lapack_funcs((driver,), (a1, b1))
- v, w, info = gvd(a1, b1, uplo=uplo, itype=type, jobz=_job,
- overwrite_a=overwrite_a,
- overwrite_b=overwrite_b)
- # Use '*gv' routine if turbo is off and no eigvals are specified
- else:
- driver = pfx+'gv'
- (gv,) = get_lapack_funcs((driver,), (a1, b1))
- v, w, info = gv(a1, b1, uplo=uplo, itype=type, jobz=_job,
- overwrite_a=overwrite_a,
- overwrite_b=overwrite_b)
- # Check if we had a successful exit
- if info == 0:
- if eigvals_only:
- return w
- else:
- return w, v
- _check_info(info, driver, positive=False) # triage more specifically
- if info > 0 and b1 is None:
- raise LinAlgError("unrecoverable internal error.")
- # The algorithm failed to converge.
- elif 0 < info <= b1.shape[0]:
- if eigvals is not None:
- raise LinAlgError("the eigenvectors %s failed to"
- " converge." % nonzero(ifail)-1)
- else:
- raise LinAlgError("internal fortran routine failed to converge: "
- "%i off-diagonal elements of an "
- "intermediate tridiagonal form did not converge"
- " to zero." % info)
- # This occurs when b is not positive definite
- else:
- raise LinAlgError("the leading minor of order %i"
- " of 'b' is not positive definite. The"
- " factorization of 'b' could not be completed"
- " and no eigenvalues or eigenvectors were"
- " computed." % (info-b1.shape[0]))
- _conv_dict = {0: 0, 1: 1, 2: 2,
- 'all': 0, 'value': 1, 'index': 2,
- 'a': 0, 'v': 1, 'i': 2}
- def _check_select(select, select_range, max_ev, max_len):
- """Check that select is valid, convert to Fortran style."""
- if isinstance(select, string_types):
- select = select.lower()
- try:
- select = _conv_dict[select]
- except KeyError:
- raise ValueError('invalid argument for select')
- vl, vu = 0., 1.
- il = iu = 1
- if select != 0: # (non-all)
- sr = asarray(select_range)
- if sr.ndim != 1 or sr.size != 2 or sr[1] < sr[0]:
- raise ValueError('select_range must be a 2-element array-like '
- 'in nondecreasing order')
- if select == 1: # (value)
- vl, vu = sr
- if max_ev == 0:
- max_ev = max_len
- else: # 2 (index)
- if sr.dtype.char.lower() not in 'hilqp':
- raise ValueError('when using select="i", select_range must '
- 'contain integers, got dtype %s (%s)'
- % (sr.dtype, sr.dtype.char))
- # translate Python (0 ... N-1) into Fortran (1 ... N) with + 1
- il, iu = sr + 1
- if min(il, iu) < 1 or max(il, iu) > max_len:
- raise ValueError('select_range out of bounds')
- max_ev = iu - il + 1
- return select, vl, vu, il, iu, max_ev
- def eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False,
- select='a', select_range=None, max_ev=0, check_finite=True):
- """
- Solve real symmetric or complex hermitian band matrix eigenvalue problem.
- Find eigenvalues w and optionally right eigenvectors v of a::
- a v[:,i] = w[i] v[:,i]
- v.H v = identity
- The matrix a is stored in a_band either in lower diagonal or upper
- diagonal ordered form:
- a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
- a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
- where u is the number of bands above the diagonal.
- Example of a_band (shape of a is (6,6), u=2)::
- upper form:
- * * a02 a13 a24 a35
- * a01 a12 a23 a34 a45
- a00 a11 a22 a33 a44 a55
- lower form:
- a00 a11 a22 a33 a44 a55
- a10 a21 a32 a43 a54 *
- a20 a31 a42 a53 * *
- Cells marked with * are not used.
- Parameters
- ----------
- a_band : (u+1, M) array_like
- The bands of the M by M matrix a.
- lower : bool, optional
- Is the matrix in the lower form. (Default is upper form)
- eigvals_only : bool, optional
- Compute only the eigenvalues and no eigenvectors.
- (Default: calculate also eigenvectors)
- overwrite_a_band : bool, optional
- Discard data in a_band (may enhance performance)
- select : {'a', 'v', 'i'}, optional
- Which eigenvalues to calculate
- ====== ========================================
- select calculated
- ====== ========================================
- 'a' All eigenvalues
- 'v' Eigenvalues in the interval (min, max]
- 'i' Eigenvalues with indices min <= i <= max
- ====== ========================================
- select_range : (min, max), optional
- Range of selected eigenvalues
- max_ev : int, optional
- For select=='v', maximum number of eigenvalues expected.
- For other values of select, has no meaning.
- In doubt, leave this parameter untouched.
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- w : (M,) ndarray
- The eigenvalues, in ascending order, each repeated according to its
- multiplicity.
- v : (M, M) float or complex ndarray
- The normalized eigenvector corresponding to the eigenvalue w[i] is
- the column v[:,i].
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge.
- See Also
- --------
- eigvals_banded : eigenvalues for symmetric/Hermitian band matrices
- eig : eigenvalues and right eigenvectors of general arrays.
- eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
- eigh_tridiagonal : eigenvalues and right eiegenvectors for
- symmetric/Hermitian tridiagonal matrices
- Examples
- --------
- >>> from scipy.linalg import eig_banded
- >>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
- >>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
- >>> w, v = eig_banded(Ab, lower=True)
- >>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
- True
- >>> w = eig_banded(Ab, lower=True, eigvals_only=True)
- >>> w
- array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
- Request only the eigenvalues between ``[-3, 4]``
- >>> w, v = eig_banded(Ab, lower=True, select='v', select_range=[-3, 4])
- >>> w
- array([-2.22987175, 3.95222349])
- """
- if eigvals_only or overwrite_a_band:
- a1 = _asarray_validated(a_band, check_finite=check_finite)
- overwrite_a_band = overwrite_a_band or (_datacopied(a1, a_band))
- else:
- a1 = array(a_band)
- if issubclass(a1.dtype.type, inexact) and not isfinite(a1).all():
- raise ValueError("array must not contain infs or NaNs")
- overwrite_a_band = 1
- if len(a1.shape) != 2:
- raise ValueError('expected two-dimensional array')
- select, vl, vu, il, iu, max_ev = _check_select(
- select, select_range, max_ev, a1.shape[1])
- del select_range
- if select == 0:
- if a1.dtype.char in 'GFD':
- # FIXME: implement this somewhen, for now go with builtin values
- # FIXME: calc optimal lwork by calling ?hbevd(lwork=-1)
- # or by using calc_lwork.f ???
- # lwork = calc_lwork.hbevd(bevd.typecode, a1.shape[0], lower)
- internal_name = 'hbevd'
- else: # a1.dtype.char in 'fd':
- # FIXME: implement this somewhen, for now go with builtin values
- # see above
- # lwork = calc_lwork.sbevd(bevd.typecode, a1.shape[0], lower)
- internal_name = 'sbevd'
- bevd, = get_lapack_funcs((internal_name,), (a1,))
- w, v, info = bevd(a1, compute_v=not eigvals_only,
- lower=lower, overwrite_ab=overwrite_a_band)
- else: # select in [1, 2]
- if eigvals_only:
- max_ev = 1
- # calculate optimal abstol for dsbevx (see manpage)
- if a1.dtype.char in 'fF': # single precision
- lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='f'),))
- else:
- lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='d'),))
- abstol = 2 * lamch('s')
- if a1.dtype.char in 'GFD':
- internal_name = 'hbevx'
- else: # a1.dtype.char in 'gfd'
- internal_name = 'sbevx'
- bevx, = get_lapack_funcs((internal_name,), (a1,))
- w, v, m, ifail, info = bevx(
- a1, vl, vu, il, iu, compute_v=not eigvals_only, mmax=max_ev,
- range=select, lower=lower, overwrite_ab=overwrite_a_band,
- abstol=abstol)
- # crop off w and v
- w = w[:m]
- if not eigvals_only:
- v = v[:, :m]
- _check_info(info, internal_name)
- if eigvals_only:
- return w
- return w, v
- def eigvals(a, b=None, overwrite_a=False, check_finite=True,
- homogeneous_eigvals=False):
- """
- Compute eigenvalues from an ordinary or generalized eigenvalue problem.
- Find eigenvalues of a general matrix::
- a vr[:,i] = w[i] b vr[:,i]
- Parameters
- ----------
- a : (M, M) array_like
- A complex or real matrix whose eigenvalues and eigenvectors
- will be computed.
- b : (M, M) array_like, optional
- Right-hand side matrix in a generalized eigenvalue problem.
- If omitted, identity matrix is assumed.
- overwrite_a : bool, optional
- Whether to overwrite data in a (may improve performance)
- check_finite : bool, optional
- Whether to check that the input matrices contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities
- or NaNs.
- homogeneous_eigvals : bool, optional
- If True, return the eigenvalues in homogeneous coordinates.
- In this case ``w`` is a (2, M) array so that::
- w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
- Default is False.
- Returns
- -------
- w : (M,) or (2, M) double or complex ndarray
- The eigenvalues, each repeated according to its multiplicity
- but not in any specific order. The shape is (M,) unless
- ``homogeneous_eigvals=True``.
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge
- See Also
- --------
- eig : eigenvalues and right eigenvectors of general arrays.
- eigvalsh : eigenvalues of symmetric or Hermitian arrays
- eigvals_banded : eigenvalues for symmetric/Hermitian band matrices
- eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
- matrices
- Examples
- --------
- >>> from scipy import linalg
- >>> a = np.array([[0., -1.], [1., 0.]])
- >>> linalg.eigvals(a)
- array([0.+1.j, 0.-1.j])
- >>> b = np.array([[0., 1.], [1., 1.]])
- >>> linalg.eigvals(a, b)
- array([ 1.+0.j, -1.+0.j])
- >>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
- >>> linalg.eigvals(a, homogeneous_eigvals=True)
- array([[3.+0.j, 8.+0.j, 7.+0.j],
- [1.+0.j, 1.+0.j, 1.+0.j]])
- """
- return eig(a, b=b, left=0, right=0, overwrite_a=overwrite_a,
- check_finite=check_finite,
- homogeneous_eigvals=homogeneous_eigvals)
- def eigvalsh(a, b=None, lower=True, overwrite_a=False,
- overwrite_b=False, turbo=True, eigvals=None, type=1,
- check_finite=True):
- """
- Solve an ordinary or generalized eigenvalue problem for a complex
- Hermitian or real symmetric matrix.
- Find eigenvalues w of matrix a, where b is positive definite::
- a v[:,i] = w[i] b v[:,i]
- v[i,:].conj() a v[:,i] = w[i]
- v[i,:].conj() b v[:,i] = 1
- Parameters
- ----------
- a : (M, M) array_like
- A complex Hermitian or real symmetric matrix whose eigenvalues and
- eigenvectors will be computed.
- b : (M, M) array_like, optional
- A complex Hermitian or real symmetric definite positive matrix in.
- If omitted, identity matrix is assumed.
- lower : bool, optional
- Whether the pertinent array data is taken from the lower or upper
- triangle of `a`. (Default: lower)
- turbo : bool, optional
- Use divide and conquer algorithm (faster but expensive in memory,
- only for generalized eigenvalue problem and if eigvals=None)
- eigvals : tuple (lo, hi), optional
- Indexes of the smallest and largest (in ascending order) eigenvalues
- and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1.
- If omitted, all eigenvalues and eigenvectors are returned.
- type : int, optional
- Specifies the problem type to be solved:
- type = 1: a v[:,i] = w[i] b v[:,i]
- type = 2: a b v[:,i] = w[i] v[:,i]
- type = 3: b a v[:,i] = w[i] v[:,i]
- overwrite_a : bool, optional
- Whether to overwrite data in `a` (may improve performance)
- overwrite_b : bool, optional
- Whether to overwrite data in `b` (may improve performance)
- check_finite : bool, optional
- Whether to check that the input matrices contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- w : (N,) float ndarray
- The N (1<=N<=M) selected eigenvalues, in ascending order, each
- repeated according to its multiplicity.
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge,
- an error occurred, or b matrix is not definite positive. Note that
- if input matrices are not symmetric or hermitian, no error is reported
- but results will be wrong.
- See Also
- --------
- eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
- eigvals : eigenvalues of general arrays
- eigvals_banded : eigenvalues for symmetric/Hermitian band matrices
- eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
- matrices
- Notes
- -----
- This function does not check the input array for being hermitian/symmetric
- in order to allow for representing arrays with only their upper/lower
- triangular parts.
- Examples
- --------
- >>> from scipy.linalg import eigvalsh
- >>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
- >>> w = eigvalsh(A)
- >>> w
- array([-3.74637491, -0.76263923, 6.08502336, 12.42399079])
- """
- return eigh(a, b=b, lower=lower, eigvals_only=True,
- overwrite_a=overwrite_a, overwrite_b=overwrite_b,
- turbo=turbo, eigvals=eigvals, type=type,
- check_finite=check_finite)
- def eigvals_banded(a_band, lower=False, overwrite_a_band=False,
- select='a', select_range=None, check_finite=True):
- """
- Solve real symmetric or complex hermitian band matrix eigenvalue problem.
- Find eigenvalues w of a::
- a v[:,i] = w[i] v[:,i]
- v.H v = identity
- The matrix a is stored in a_band either in lower diagonal or upper
- diagonal ordered form:
- a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
- a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
- where u is the number of bands above the diagonal.
- Example of a_band (shape of a is (6,6), u=2)::
- upper form:
- * * a02 a13 a24 a35
- * a01 a12 a23 a34 a45
- a00 a11 a22 a33 a44 a55
- lower form:
- a00 a11 a22 a33 a44 a55
- a10 a21 a32 a43 a54 *
- a20 a31 a42 a53 * *
- Cells marked with * are not used.
- Parameters
- ----------
- a_band : (u+1, M) array_like
- The bands of the M by M matrix a.
- lower : bool, optional
- Is the matrix in the lower form. (Default is upper form)
- overwrite_a_band : bool, optional
- Discard data in a_band (may enhance performance)
- select : {'a', 'v', 'i'}, optional
- Which eigenvalues to calculate
- ====== ========================================
- select calculated
- ====== ========================================
- 'a' All eigenvalues
- 'v' Eigenvalues in the interval (min, max]
- 'i' Eigenvalues with indices min <= i <= max
- ====== ========================================
- select_range : (min, max), optional
- Range of selected eigenvalues
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- w : (M,) ndarray
- The eigenvalues, in ascending order, each repeated according to its
- multiplicity.
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge.
- See Also
- --------
- eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
- band matrices
- eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
- matrices
- eigvals : eigenvalues of general arrays
- eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
- eig : eigenvalues and right eigenvectors for non-symmetric arrays
- Examples
- --------
- >>> from scipy.linalg import eigvals_banded
- >>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
- >>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
- >>> w = eigvals_banded(Ab, lower=True)
- >>> w
- array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
- """
- return eig_banded(a_band, lower=lower, eigvals_only=1,
- overwrite_a_band=overwrite_a_band, select=select,
- select_range=select_range, check_finite=check_finite)
- def eigvalsh_tridiagonal(d, e, select='a', select_range=None,
- check_finite=True, tol=0., lapack_driver='auto'):
- """
- Solve eigenvalue problem for a real symmetric tridiagonal matrix.
- Find eigenvalues `w` of ``a``::
- a v[:,i] = w[i] v[:,i]
- v.H v = identity
- For a real symmetric matrix ``a`` with diagonal elements `d` and
- off-diagonal elements `e`.
- Parameters
- ----------
- d : ndarray, shape (ndim,)
- The diagonal elements of the array.
- e : ndarray, shape (ndim-1,)
- The off-diagonal elements of the array.
- select : {'a', 'v', 'i'}, optional
- Which eigenvalues to calculate
- ====== ========================================
- select calculated
- ====== ========================================
- 'a' All eigenvalues
- 'v' Eigenvalues in the interval (min, max]
- 'i' Eigenvalues with indices min <= i <= max
- ====== ========================================
- select_range : (min, max), optional
- Range of selected eigenvalues
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- tol : float
- The absolute tolerance to which each eigenvalue is required
- (only used when ``lapack_driver='stebz'``).
- An eigenvalue (or cluster) is considered to have converged if it
- lies in an interval of this width. If <= 0. (default),
- the value ``eps*|a|`` is used where eps is the machine precision,
- and ``|a|`` is the 1-norm of the matrix ``a``.
- lapack_driver : str
- LAPACK function to use, can be 'auto', 'stemr', 'stebz', 'sterf',
- or 'stev'. When 'auto' (default), it will use 'stemr' if ``select='a'``
- and 'stebz' otherwise. 'sterf' and 'stev' can only be used when
- ``select='a'``.
- Returns
- -------
- w : (M,) ndarray
- The eigenvalues, in ascending order, each repeated according to its
- multiplicity.
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge.
- See Also
- --------
- eigh_tridiagonal : eigenvalues and right eiegenvectors for
- symmetric/Hermitian tridiagonal matrices
- Examples
- --------
- >>> from scipy.linalg import eigvalsh_tridiagonal, eigvalsh
- >>> d = 3*np.ones(4)
- >>> e = -1*np.ones(3)
- >>> w = eigvalsh_tridiagonal(d, e)
- >>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
- >>> w2 = eigvalsh(A) # Verify with other eigenvalue routines
- >>> np.allclose(w - w2, np.zeros(4))
- True
- """
- return eigh_tridiagonal(
- d, e, eigvals_only=True, select=select, select_range=select_range,
- check_finite=check_finite, tol=tol, lapack_driver=lapack_driver)
- def eigh_tridiagonal(d, e, eigvals_only=False, select='a', select_range=None,
- check_finite=True, tol=0., lapack_driver='auto'):
- """
- Solve eigenvalue problem for a real symmetric tridiagonal matrix.
- Find eigenvalues `w` and optionally right eigenvectors `v` of ``a``::
- a v[:,i] = w[i] v[:,i]
- v.H v = identity
- For a real symmetric matrix ``a`` with diagonal elements `d` and
- off-diagonal elements `e`.
- Parameters
- ----------
- d : ndarray, shape (ndim,)
- The diagonal elements of the array.
- e : ndarray, shape (ndim-1,)
- The off-diagonal elements of the array.
- select : {'a', 'v', 'i'}, optional
- Which eigenvalues to calculate
- ====== ========================================
- select calculated
- ====== ========================================
- 'a' All eigenvalues
- 'v' Eigenvalues in the interval (min, max]
- 'i' Eigenvalues with indices min <= i <= max
- ====== ========================================
- select_range : (min, max), optional
- Range of selected eigenvalues
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- tol : float
- The absolute tolerance to which each eigenvalue is required
- (only used when 'stebz' is the `lapack_driver`).
- An eigenvalue (or cluster) is considered to have converged if it
- lies in an interval of this width. If <= 0. (default),
- the value ``eps*|a|`` is used where eps is the machine precision,
- and ``|a|`` is the 1-norm of the matrix ``a``.
- lapack_driver : str
- LAPACK function to use, can be 'auto', 'stemr', 'stebz', 'sterf',
- or 'stev'. When 'auto' (default), it will use 'stemr' if ``select='a'``
- and 'stebz' otherwise. When 'stebz' is used to find the eigenvalues and
- ``eigvals_only=False``, then a second LAPACK call (to ``?STEIN``) is
- used to find the corresponding eigenvectors. 'sterf' can only be
- used when ``eigvals_only=True`` and ``select='a'``. 'stev' can only
- be used when ``select='a'``.
- Returns
- -------
- w : (M,) ndarray
- The eigenvalues, in ascending order, each repeated according to its
- multiplicity.
- v : (M, M) ndarray
- The normalized eigenvector corresponding to the eigenvalue ``w[i]`` is
- the column ``v[:,i]``.
- Raises
- ------
- LinAlgError
- If eigenvalue computation does not converge.
- See Also
- --------
- eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
- matrices
- eig : eigenvalues and right eigenvectors for non-symmetric arrays
- eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
- eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
- band matrices
- Notes
- -----
- This function makes use of LAPACK ``S/DSTEMR`` routines.
- Examples
- --------
- >>> from scipy.linalg import eigh_tridiagonal
- >>> d = 3*np.ones(4)
- >>> e = -1*np.ones(3)
- >>> w, v = eigh_tridiagonal(d, e)
- >>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
- >>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
- True
- """
- d = _asarray_validated(d, check_finite=check_finite)
- e = _asarray_validated(e, check_finite=check_finite)
- for check in (d, e):
- if check.ndim != 1:
- raise ValueError('expected one-dimensional array')
- if check.dtype.char in 'GFD': # complex
- raise TypeError('Only real arrays currently supported')
- if d.size != e.size + 1:
- raise ValueError('d (%s) must have one more element than e (%s)'
- % (d.size, e.size))
- select, vl, vu, il, iu, _ = _check_select(
- select, select_range, 0, d.size)
- if not isinstance(lapack_driver, string_types):
- raise TypeError('lapack_driver must be str')
- drivers = ('auto', 'stemr', 'sterf', 'stebz', 'stev')
- if lapack_driver not in drivers:
- raise ValueError('lapack_driver must be one of %s, got %s'
- % (drivers, lapack_driver))
- if lapack_driver == 'auto':
- lapack_driver = 'stemr' if select == 0 else 'stebz'
- func, = get_lapack_funcs((lapack_driver,), (d, e))
- compute_v = not eigvals_only
- if lapack_driver == 'sterf':
- if select != 0:
- raise ValueError('sterf can only be used when select == "a"')
- if not eigvals_only:
- raise ValueError('sterf can only be used when eigvals_only is '
- 'True')
- w, info = func(d, e)
- m = len(w)
- elif lapack_driver == 'stev':
- if select != 0:
- raise ValueError('stev can only be used when select == "a"')
- w, v, info = func(d, e, compute_v=compute_v)
- m = len(w)
- elif lapack_driver == 'stebz':
- tol = float(tol)
- internal_name = 'stebz'
- stebz, = get_lapack_funcs((internal_name,), (d, e))
- # If getting eigenvectors, needs to be block-ordered (B) instead of
- # matirx-ordered (E), and we will reorder later
- order = 'E' if eigvals_only else 'B'
- m, w, iblock, isplit, info = stebz(d, e, select, vl, vu, il, iu, tol,
- order)
- else: # 'stemr'
- # ?STEMR annoyingly requires size N instead of N-1
- e_ = empty(e.size+1, e.dtype)
- e_[:-1] = e
- stemr_lwork, = get_lapack_funcs(('stemr_lwork',), (d, e))
- lwork, liwork, info = stemr_lwork(d, e_, select, vl, vu, il, iu,
- compute_v=compute_v)
- _check_info(info, 'stemr_lwork')
- m, w, v, info = func(d, e_, select, vl, vu, il, iu,
- compute_v=compute_v, lwork=lwork, liwork=liwork)
- _check_info(info, lapack_driver + ' (eigh_tridiagonal)')
- w = w[:m]
- if eigvals_only:
- return w
- else:
- # Do we still need to compute the eigenvalues?
- if lapack_driver == 'stebz':
- func, = get_lapack_funcs(('stein',), (d, e))
- v, info = func(d, e, w, iblock, isplit)
- _check_info(info, 'stein (eigh_tridiagonal)',
- positive='%d eigenvectors failed to converge')
- # Convert block-order to matrix-order
- order = argsort(w)
- w, v = w[order], v[:, order]
- else:
- v = v[:, :m]
- return w, v
- def _check_info(info, driver, positive='did not converge (LAPACK info=%d)'):
- """Check info return value."""
- if info < 0:
- raise ValueError('illegal value in argument %d of internal %s'
- % (-info, driver))
- if info > 0 and positive:
- raise LinAlgError(("%s " + positive) % (driver, info,))
- def hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True):
- """
- Compute Hessenberg form of a matrix.
- The Hessenberg decomposition is::
- A = Q H Q^H
- where `Q` is unitary/orthogonal and `H` has only zero elements below
- the first sub-diagonal.
- Parameters
- ----------
- a : (M, M) array_like
- Matrix to bring into Hessenberg form.
- calc_q : bool, optional
- Whether to compute the transformation matrix. Default is False.
- overwrite_a : bool, optional
- Whether to overwrite `a`; may improve performance.
- Default is False.
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- H : (M, M) ndarray
- Hessenberg form of `a`.
- Q : (M, M) ndarray
- Unitary/orthogonal similarity transformation matrix ``A = Q H Q^H``.
- Only returned if ``calc_q=True``.
- Examples
- --------
- >>> from scipy.linalg import hessenberg
- >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
- >>> H, Q = hessenberg(A, calc_q=True)
- >>> H
- array([[ 2. , -11.65843866, 1.42005301, 0.25349066],
- [ -9.94987437, 14.53535354, -5.31022304, 2.43081618],
- [ 0. , -1.83299243, 0.38969961, -0.51527034],
- [ 0. , 0. , -3.83189513, 1.07494686]])
- >>> np.allclose(Q @ H @ Q.conj().T - A, np.zeros((4, 4)))
- True
- """
- a1 = _asarray_validated(a, check_finite=check_finite)
- if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
- raise ValueError('expected square matrix')
- overwrite_a = overwrite_a or (_datacopied(a1, a))
- # if 2x2 or smaller: already in Hessenberg
- if a1.shape[0] <= 2:
- if calc_q:
- return a1, numpy.eye(a1.shape[0])
- return a1
- gehrd, gebal, gehrd_lwork = get_lapack_funcs(('gehrd', 'gebal',
- 'gehrd_lwork'), (a1,))
- ba, lo, hi, pivscale, info = gebal(a1, permute=0, overwrite_a=overwrite_a)
- _check_info(info, 'gebal (hessenberg)', positive=False)
- n = len(a1)
- lwork = _compute_lwork(gehrd_lwork, ba.shape[0], lo=lo, hi=hi)
- hq, tau, info = gehrd(ba, lo=lo, hi=hi, lwork=lwork, overwrite_a=1)
- _check_info(info, 'gehrd (hessenberg)', positive=False)
- h = numpy.triu(hq, -1)
- if not calc_q:
- return h
- # use orghr/unghr to compute q
- orghr, orghr_lwork = get_lapack_funcs(('orghr', 'orghr_lwork'), (a1,))
- lwork = _compute_lwork(orghr_lwork, n, lo=lo, hi=hi)
- q, info = orghr(a=hq, tau=tau, lo=lo, hi=hi, lwork=lwork, overwrite_a=1)
- _check_info(info, 'orghr (hessenberg)', positive=False)
- return h, q
- def cdf2rdf(w, v):
- """
- Converts complex eigenvalues ``w`` and eigenvectors ``v`` to real
- eigenvalues in a block diagonal form ``wr`` and the associated real
- eigenvectors ``vr``, such that::
- vr @ wr = X @ vr
- continues to hold, where ``X`` is the original array for which ``w`` and
- ``v`` are the eigenvalues and eigenvectors.
- .. versionadded:: 1.1.0
- Parameters
- ----------
- w : (..., M) array_like
- Complex or real eigenvalues, an array or stack of arrays
- Conjugate pairs must not be interleaved, else the wrong result
- will be produced. So ``[1+1j, 1, 1-1j]`` will give a correct result, but
- ``[1+1j, 2+1j, 1-1j, 2-1j]`` will not.
- v : (..., M, M) array_like
- Complex or real eigenvectors, a square array or stack of square arrays.
- Returns
- -------
- wr : (..., M, M) ndarray
- Real diagonal block form of eigenvalues
- vr : (..., M, M) ndarray
- Real eigenvectors associated with ``wr``
- See Also
- --------
- eig : Eigenvalues and right eigenvectors for non-symmetric arrays
- rsf2csf : Convert real Schur form to complex Schur form
- Notes
- -----
- ``w``, ``v`` must be the eigenstructure for some *real* matrix ``X``.
- For example, obtained by ``w, v = scipy.linalg.eig(X)`` or
- ``w, v = numpy.linalg.eig(X)`` in which case ``X`` can also represent
- stacked arrays.
- .. versionadded:: 1.1.0
- Examples
- --------
- >>> X = np.array([[1, 2, 3], [0, 4, 5], [0, -5, 4]])
- >>> X
- array([[ 1, 2, 3],
- [ 0, 4, 5],
- [ 0, -5, 4]])
- >>> from scipy import linalg
- >>> w, v = linalg.eig(X)
- >>> w
- array([ 1.+0.j, 4.+5.j, 4.-5.j])
- >>> v
- array([[ 1.00000+0.j , -0.01906-0.40016j, -0.01906+0.40016j],
- [ 0.00000+0.j , 0.00000-0.64788j, 0.00000+0.64788j],
- [ 0.00000+0.j , 0.64788+0.j , 0.64788-0.j ]])
- >>> wr, vr = linalg.cdf2rdf(w, v)
- >>> wr
- array([[ 1., 0., 0.],
- [ 0., 4., 5.],
- [ 0., -5., 4.]])
- >>> vr
- array([[ 1. , 0.40016, -0.01906],
- [ 0. , 0.64788, 0. ],
- [ 0. , 0. , 0.64788]])
- >>> vr @ wr
- array([[ 1. , 1.69593, 1.9246 ],
- [ 0. , 2.59153, 3.23942],
- [ 0. , -3.23942, 2.59153]])
- >>> X @ vr
- array([[ 1. , 1.69593, 1.9246 ],
- [ 0. , 2.59153, 3.23942],
- [ 0. , -3.23942, 2.59153]])
- """
- w, v = _asarray_validated(w), _asarray_validated(v)
- # check dimensions
- if w.ndim < 1:
- raise ValueError('expected w to be at least one-dimensional')
- if v.ndim < 2:
- raise ValueError('expected v to be at least two-dimensional')
- if v.ndim != w.ndim + 1:
- raise ValueError('expected eigenvectors array to have exactly one '
- 'dimension more than eigenvalues array')
- # check shapes
- n = w.shape[-1]
- M = w.shape[:-1]
- if v.shape[-2] != v.shape[-1]:
- raise ValueError('expected v to be a square matrix or stacked square '
- 'matrices: v.shape[-2] = v.shape[-1]')
- if v.shape[-1] != n:
- raise ValueError('expected the same number of eigenvalues as '
- 'eigenvectors')
- # get indices for each first pair of complex eigenvalues
- complex_mask = iscomplex(w)
- n_complex = complex_mask.sum(axis=-1)
- # check if all complex eigenvalues have conjugate pairs
- if not (n_complex % 2 == 0).all():
- raise ValueError('expected complex-conjugate pairs of eigenvalues')
- # find complex indices
- idx = nonzero(complex_mask)
- idx_stack = idx[:-1]
- idx_elem = idx[-1]
- # filter them to conjugate indices, assuming pairs are not interleaved
- j = idx_elem[0::2]
- k = idx_elem[1::2]
- stack_ind = ()
- for i in idx_stack:
- # should never happen, assuming nonzero orders by the last axis
- assert (i[0::2] == i[1::2]).all(), "Conjugate pair spanned different arrays!"
- stack_ind += (i[0::2],)
- # all eigenvalues to diagonal form
- wr = zeros(M + (n, n), dtype=w.real.dtype)
- di = range(n)
- wr[..., di, di] = w.real
- # complex eigenvalues to real block diagonal form
- wr[stack_ind + (j, k)] = w[stack_ind + (j,)].imag
- wr[stack_ind + (k, j)] = w[stack_ind + (k,)].imag
- # compute real eigenvectors associated with real block diagonal eigenvalues
- u = zeros(M + (n, n), dtype=numpy.cdouble)
- u[..., di, di] = 1.0
- u[stack_ind + (j, j)] = 0.5j
- u[stack_ind + (j, k)] = 0.5
- u[stack_ind + (k, j)] = -0.5j
- u[stack_ind + (k, k)] = 0.5
- # multipy matrices v and u (equivalent to v @ u)
- vr = einsum('...ij,...jk->...ik', v, u).real
- return wr, vr
|