123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245 |
- #
- # Created by: Pearu Peterson, September 2002
- #
- from __future__ import division, print_function, absolute_import
- import sys
- import subprocess
- import time
- from functools import reduce
- from numpy.testing import (assert_equal, assert_array_almost_equal, assert_,
- assert_allclose, assert_almost_equal,
- assert_array_equal)
- import pytest
- from pytest import raises as assert_raises
- import numpy as np
- from numpy import (eye, ones, zeros, zeros_like, triu, tril, tril_indices,
- triu_indices)
- from numpy.random import rand, seed
- from scipy.linalg import _flapack as flapack
- from scipy.linalg import inv, svd, cholesky, solve
- from scipy.linalg.lapack import _compute_lwork
- try:
- from scipy.linalg import _clapack as clapack
- except ImportError:
- clapack = None
- from scipy.linalg.lapack import get_lapack_funcs
- from scipy.linalg.blas import get_blas_funcs
- REAL_DTYPES = [np.float32, np.float64]
- COMPLEX_DTYPES = [np.complex64, np.complex128]
- DTYPES = REAL_DTYPES + COMPLEX_DTYPES
- class TestFlapackSimple(object):
- def test_gebal(self):
- a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
- a1 = [[1, 0, 0, 3e-4],
- [4, 0, 0, 2e-3],
- [7, 1, 0, 0],
- [0, 1, 0, 0]]
- for p in 'sdzc':
- f = getattr(flapack, p+'gebal', None)
- if f is None:
- continue
- ba, lo, hi, pivscale, info = f(a)
- assert_(not info, repr(info))
- assert_array_almost_equal(ba, a)
- assert_equal((lo, hi), (0, len(a[0])-1))
- assert_array_almost_equal(pivscale, np.ones(len(a)))
- ba, lo, hi, pivscale, info = f(a1, permute=1, scale=1)
- assert_(not info, repr(info))
- # print(a1)
- # print(ba, lo, hi, pivscale)
- def test_gehrd(self):
- a = [[-149, -50, -154],
- [537, 180, 546],
- [-27, -9, -25]]
- for p in 'd':
- f = getattr(flapack, p+'gehrd', None)
- if f is None:
- continue
- ht, tau, info = f(a)
- assert_(not info, repr(info))
- def test_trsyl(self):
- a = np.array([[1, 2], [0, 4]])
- b = np.array([[5, 6], [0, 8]])
- c = np.array([[9, 10], [11, 12]])
- trans = 'T'
- # Test single and double implementations, including most
- # of the options
- for dtype in 'fdFD':
- a1, b1, c1 = a.astype(dtype), b.astype(dtype), c.astype(dtype)
- trsyl, = get_lapack_funcs(('trsyl',), (a1,))
- if dtype.isupper(): # is complex dtype
- a1[0] += 1j
- trans = 'C'
- x, scale, info = trsyl(a1, b1, c1)
- assert_array_almost_equal(np.dot(a1, x) + np.dot(x, b1),
- scale * c1)
- x, scale, info = trsyl(a1, b1, c1, trana=trans, tranb=trans)
- assert_array_almost_equal(
- np.dot(a1.conjugate().T, x) + np.dot(x, b1.conjugate().T),
- scale * c1, decimal=4)
- x, scale, info = trsyl(a1, b1, c1, isgn=-1)
- assert_array_almost_equal(np.dot(a1, x) - np.dot(x, b1),
- scale * c1, decimal=4)
- def test_lange(self):
- a = np.array([
- [-149, -50, -154],
- [537, 180, 546],
- [-27, -9, -25]])
- for dtype in 'fdFD':
- for norm in 'Mm1OoIiFfEe':
- a1 = a.astype(dtype)
- if dtype.isupper():
- # is complex dtype
- a1[0, 0] += 1j
- lange, = get_lapack_funcs(('lange',), (a1,))
- value = lange(norm, a1)
- if norm in 'FfEe':
- if dtype in 'Ff':
- decimal = 3
- else:
- decimal = 7
- ref = np.sqrt(np.sum(np.square(np.abs(a1))))
- assert_almost_equal(value, ref, decimal)
- else:
- if norm in 'Mm':
- ref = np.max(np.abs(a1))
- elif norm in '1Oo':
- ref = np.max(np.sum(np.abs(a1), axis=0))
- elif norm in 'Ii':
- ref = np.max(np.sum(np.abs(a1), axis=1))
- assert_equal(value, ref)
- class TestLapack(object):
- def test_flapack(self):
- if hasattr(flapack, 'empty_module'):
- # flapack module is empty
- pass
- def test_clapack(self):
- if hasattr(clapack, 'empty_module'):
- # clapack module is empty
- pass
- class TestLeastSquaresSolvers(object):
- def test_gels(self):
- seed(1234)
- # Test fat/tall matrix argument handling - gh-issue #8329
- for ind, dtype in enumerate(DTYPES):
- m = 10
- n = 20
- nrhs = 1
- a1 = rand(m, n).astype(dtype)
- b1 = rand(n).astype(dtype)
- gls, glslw = get_lapack_funcs(('gels', 'gels_lwork'), dtype=dtype)
- # Request of sizes
- lwork = _compute_lwork(glslw, m, n, nrhs)
- _, _, info = gls(a1, b1, lwork=lwork)
- assert_(info >= 0)
- _, _, info = gls(a1, b1, trans='TTCC'[ind], lwork=lwork)
- assert_(info >= 0)
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gels, gels_lwork, geqrf = get_lapack_funcs(
- ('gels', 'gels_lwork', 'geqrf'), (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- lwork = _compute_lwork(gels_lwork, m, n, nrhs)
- lqr, x, info = gels(a1, b1, lwork=lwork)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- lqr_truth, _, _, _ = geqrf(a1)
- assert_array_equal(lqr, lqr_truth)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gels, gels_lwork, geqrf = get_lapack_funcs(
- ('gels', 'gels_lwork', 'geqrf'), (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- lwork = _compute_lwork(gels_lwork, m, n, nrhs)
- lqr, x, info = gels(a1, b1, lwork=lwork)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype), rtol=25*np.finfo(dtype).eps)
- lqr_truth, _, _, _ = geqrf(a1)
- assert_array_equal(lqr, lqr_truth)
- def test_gelsd(self):
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, iwork, info = gelsd_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- iwork_size = iwork
- x, s, rank, info = gelsd(a1, b1, lwork, iwork_size,
- -1, False, False)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- assert_allclose(s, np.array([12.596017180511966,
- 0.583396253199685], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gelsd, gelsd_lwork = get_lapack_funcs(('gelsd', 'gelsd_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, rwork, iwork, info = gelsd_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- rwork_size = int(rwork)
- iwork_size = iwork
- x, s, rank, info = gelsd(a1, b1, lwork, rwork_size, iwork_size,
- -1, False, False)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype), rtol=25*np.finfo(dtype).eps)
- assert_allclose(s,
- np.array([13.035514762572043, 4.337666985231382],
- dtype=dtype), rtol=25*np.finfo(dtype).eps)
- def test_gelss(self):
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelss_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- assert_allclose(s, np.array([12.596017180511966,
- 0.583396253199685], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gelss, gelss_lwork = get_lapack_funcs(('gelss', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelss_lwork(m, n, nrhs, -1)
- lwork = int(np.real(work))
- v, x, s, rank, work, info = gelss(a1, b1, -1, lwork, False, False)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- assert_allclose(s, np.array([13.035514762572043,
- 4.337666985231382], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- def test_gelsy(self):
- for dtype in REAL_DTYPES:
- a1 = np.array([[1.0, 2.0],
- [4.0, 5.0],
- [7.0, 8.0]], dtype=dtype)
- b1 = np.array([16.0, 17.0, 20.0], dtype=dtype)
- gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
- lwork = int(np.real(work))
- jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
- v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
- lwork, False, False)
- assert_allclose(x[:-1], np.array([-14.333333333333323,
- 14.999999999999991], dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- for dtype in COMPLEX_DTYPES:
- a1 = np.array([[1.0+4.0j, 2.0],
- [4.0+0.5j, 5.0-3.0j],
- [7.0-2.0j, 8.0+0.7j]], dtype=dtype)
- b1 = np.array([16.0, 17.0+2.0j, 20.0-4.0j], dtype=dtype)
- gelsy, gelsy_lwork = get_lapack_funcs(('gelsy', 'gelss_lwork'),
- (a1, b1))
- m, n = a1.shape
- if len(b1.shape) == 2:
- nrhs = b1.shape[1]
- else:
- nrhs = 1
- # Request of sizes
- work, info = gelsy_lwork(m, n, nrhs, 10*np.finfo(dtype).eps)
- lwork = int(np.real(work))
- jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
- v, x, j, rank, info = gelsy(a1, b1, jptv, np.finfo(dtype).eps,
- lwork, False, False)
- assert_allclose(x[:-1],
- np.array([1.161753632288328-1.901075709391912j,
- 1.735882340522193+1.521240901196909j],
- dtype=dtype),
- rtol=25*np.finfo(dtype).eps)
- class TestRegression(object):
- def test_ticket_1645(self):
- # Check that RQ routines have correct lwork
- for dtype in DTYPES:
- a = np.zeros((300, 2), dtype=dtype)
- gerqf, = get_lapack_funcs(['gerqf'], [a])
- assert_raises(Exception, gerqf, a, lwork=2)
- rq, tau, work, info = gerqf(a)
- if dtype in REAL_DTYPES:
- orgrq, = get_lapack_funcs(['orgrq'], [a])
- assert_raises(Exception, orgrq, rq[-2:], tau, lwork=1)
- orgrq(rq[-2:], tau, lwork=2)
- elif dtype in COMPLEX_DTYPES:
- ungrq, = get_lapack_funcs(['ungrq'], [a])
- assert_raises(Exception, ungrq, rq[-2:], tau, lwork=1)
- ungrq(rq[-2:], tau, lwork=2)
- class TestDpotr(object):
- def test_gh_2691(self):
- # 'lower' argument of dportf/dpotri
- for lower in [True, False]:
- for clean in [True, False]:
- np.random.seed(42)
- x = np.random.normal(size=(3, 3))
- a = x.dot(x.T)
- dpotrf, dpotri = get_lapack_funcs(("potrf", "potri"), (a, ))
- c, info = dpotrf(a, lower, clean=clean)
- dpt = dpotri(c, lower)[0]
- if lower:
- assert_allclose(np.tril(dpt), np.tril(inv(a)))
- else:
- assert_allclose(np.triu(dpt), np.triu(inv(a)))
- class TestDlasd4(object):
- def test_sing_val_update(self):
- sigmas = np.array([4., 3., 2., 0])
- m_vec = np.array([3.12, 5.7, -4.8, -2.2])
- M = np.hstack((np.vstack((np.diag(sigmas[0:-1]),
- np.zeros((1, len(m_vec) - 1)))), m_vec[:, np.newaxis]))
- SM = svd(M, full_matrices=False, compute_uv=False, overwrite_a=False,
- check_finite=False)
- it_len = len(sigmas)
- sgm = np.concatenate((sigmas[::-1], (sigmas[0] +
- it_len*np.sqrt(np.sum(np.power(m_vec, 2))),)))
- mvc = np.concatenate((m_vec[::-1], (0,)))
- lasd4 = get_lapack_funcs('lasd4', (sigmas,))
- roots = []
- for i in range(0, it_len):
- res = lasd4(i, sgm, mvc)
- roots.append(res[1])
- assert_((res[3] <= 0), "LAPACK root finding dlasd4 failed to find \
- the singular value %i" % i)
- roots = np.array(roots)[::-1]
- assert_((not np.any(np.isnan(roots)), "There are NaN roots"))
- assert_allclose(SM, roots, atol=100*np.finfo(np.float64).eps,
- rtol=100*np.finfo(np.float64).eps)
- def test_lartg():
- for dtype in 'fdFD':
- lartg = get_lapack_funcs('lartg', dtype=dtype)
- f = np.array(3, dtype)
- g = np.array(4, dtype)
- if np.iscomplexobj(g):
- g *= 1j
- cs, sn, r = lartg(f, g)
- assert_allclose(cs, 3.0/5.0)
- assert_allclose(r, 5.0)
- if np.iscomplexobj(g):
- assert_allclose(sn, -4.0j/5.0)
- assert_(type(r) == complex)
- assert_(type(cs) == float)
- else:
- assert_allclose(sn, 4.0/5.0)
- def test_rot():
- # srot, drot from blas and crot and zrot from lapack.
- for dtype in 'fdFD':
- c = 0.6
- s = 0.8
- u = np.ones(4, dtype) * 3
- v = np.ones(4, dtype) * 4
- atol = 10**-(np.finfo(dtype).precision-1)
- if dtype in 'fd':
- rot = get_blas_funcs('rot', dtype=dtype)
- f = 4
- else:
- rot = get_lapack_funcs('rot', dtype=dtype)
- s *= -1j
- v *= 1j
- f = 4j
- assert_allclose(rot(u, v, c, s), [[5, 5, 5, 5],
- [0, 0, 0, 0]], atol=atol)
- assert_allclose(rot(u, v, c, s, n=2), [[5, 5, 3, 3],
- [0, 0, f, f]], atol=atol)
- assert_allclose(rot(u, v, c, s, offx=2, offy=2),
- [[3, 3, 5, 5], [f, f, 0, 0]], atol=atol)
- assert_allclose(rot(u, v, c, s, incx=2, offy=2, n=2),
- [[5, 3, 5, 3], [f, f, 0, 0]], atol=atol)
- assert_allclose(rot(u, v, c, s, offx=2, incy=2, n=2),
- [[3, 3, 5, 5], [0, f, 0, f]], atol=atol)
- assert_allclose(rot(u, v, c, s, offx=2, incx=2, offy=2, incy=2, n=1),
- [[3, 3, 5, 3], [f, f, 0, f]], atol=atol)
- assert_allclose(rot(u, v, c, s, incx=-2, incy=-2, n=2),
- [[5, 3, 5, 3], [0, f, 0, f]], atol=atol)
- a, b = rot(u, v, c, s, overwrite_x=1, overwrite_y=1)
- assert_(a is u)
- assert_(b is v)
- assert_allclose(a, [5, 5, 5, 5], atol=atol)
- assert_allclose(b, [0, 0, 0, 0], atol=atol)
- def test_larfg_larf():
- np.random.seed(1234)
- a0 = np.random.random((4, 4))
- a0 = a0.T.dot(a0)
- a0j = np.random.random((4, 4)) + 1j*np.random.random((4, 4))
- a0j = a0j.T.conj().dot(a0j)
- # our test here will be to do one step of reducing a hermetian matrix to
- # tridiagonal form using householder transforms.
- for dtype in 'fdFD':
- larfg, larf = get_lapack_funcs(['larfg', 'larf'], dtype=dtype)
- if dtype in 'FD':
- a = a0j.copy()
- else:
- a = a0.copy()
- # generate a householder transform to clear a[2:,0]
- alpha, x, tau = larfg(a.shape[0]-1, a[1, 0], a[2:, 0])
- # create expected output
- expected = np.zeros_like(a[:, 0])
- expected[0] = a[0, 0]
- expected[1] = alpha
- # assemble householder vector
- v = np.zeros_like(a[1:, 0])
- v[0] = 1.0
- v[1:] = x
- # apply transform from the left
- a[1:, :] = larf(v, tau.conjugate(), a[1:, :], np.zeros(a.shape[1]))
- # apply transform from the right
- a[:, 1:] = larf(v, tau, a[:, 1:], np.zeros(a.shape[0]), side='R')
- assert_allclose(a[:, 0], expected, atol=1e-5)
- assert_allclose(a[0, :], expected, atol=1e-5)
- @pytest.mark.xslow
- def test_sgesdd_lwork_bug_workaround():
- # Test that SGESDD lwork is sufficiently large for LAPACK.
- #
- # This checks that workaround around an apparent LAPACK bug
- # actually works. cf. gh-5401
- #
- # xslow: requires 1GB+ of memory
- p = subprocess.Popen([sys.executable, '-c',
- 'import numpy as np; '
- 'from scipy.linalg import svd; '
- 'a = np.zeros([9537, 9537], dtype=np.float32); '
- 'svd(a)'],
- stdout=subprocess.PIPE,
- stderr=subprocess.STDOUT)
- # Check if it an error occurred within 5 sec; the computation can
- # take substantially longer, and we will not wait for it to finish
- for j in range(50):
- time.sleep(0.1)
- if p.poll() is not None:
- returncode = p.returncode
- break
- else:
- # Didn't exit in time -- probably entered computation. The
- # error is raised before entering computation, so things are
- # probably OK.
- returncode = 0
- p.terminate()
- assert_equal(returncode, 0,
- "Code apparently failed: " + p.stdout.read())
- class TestSytrd(object):
- def test_sytrd(self):
- for dtype in REAL_DTYPES:
- # Assert that a 0x0 matrix raises an error
- A = np.zeros((0, 0), dtype=dtype)
- sytrd, sytrd_lwork = \
- get_lapack_funcs(('sytrd', 'sytrd_lwork'), (A,))
- assert_raises(ValueError, sytrd, A)
- # Tests for n = 1 currently fail with
- # ```
- # ValueError: failed to create intent(cache|hide)|optional array--
- # must have defined dimensions but got (0,)
- # ```
- # This is a NumPy issue
- # <https://github.com/numpy/numpy/issues/9617>.
- # TODO once the issue has been resolved, test for n=1
- # some upper triangular array
- n = 3
- A = np.zeros((n, n), dtype=dtype)
- A[np.triu_indices_from(A)] = \
- np.arange(1, n*(n+1)//2+1, dtype=dtype)
- # query lwork
- lwork, info = sytrd_lwork(n)
- assert_equal(info, 0)
- # check lower=1 behavior (shouldn't do much since the matrix is
- # upper triangular)
- data, d, e, tau, info = sytrd(A, lower=1, lwork=lwork)
- assert_equal(info, 0)
- assert_allclose(data, A, atol=5*np.finfo(dtype).eps, rtol=1.0)
- assert_allclose(d, np.diag(A))
- assert_allclose(e, 0.0)
- assert_allclose(tau, 0.0)
- # and now for the proper test (lower=0 is the default)
- data, d, e, tau, info = sytrd(A, lwork=lwork)
- assert_equal(info, 0)
- # assert Q^T*A*Q = tridiag(e, d, e)
- # build tridiagonal matrix
- T = np.zeros_like(A, dtype=dtype)
- k = np.arange(A.shape[0])
- T[k, k] = d
- k2 = np.arange(A.shape[0]-1)
- T[k2+1, k2] = e
- T[k2, k2+1] = e
- # build Q
- Q = np.eye(n, n, dtype=dtype)
- for i in range(n-1):
- v = np.zeros(n, dtype=dtype)
- v[:i] = data[:i, i+1]
- v[i] = 1.0
- H = np.eye(n, n, dtype=dtype) - tau[i] * np.outer(v, v)
- Q = np.dot(H, Q)
- # Make matrix fully symmetric
- i_lower = np.tril_indices(n, -1)
- A[i_lower] = A.T[i_lower]
- QTAQ = np.dot(Q.T, np.dot(A, Q))
- # disable rtol here since some values in QTAQ and T are very close
- # to 0.
- assert_allclose(QTAQ, T, atol=5*np.finfo(dtype).eps, rtol=1.0)
- class TestHetrd(object):
- def test_hetrd(self):
- for real_dtype, complex_dtype in zip(REAL_DTYPES, COMPLEX_DTYPES):
- # Assert that a 0x0 matrix raises an error
- A = np.zeros((0, 0), dtype=complex_dtype)
- hetrd, hetrd_lwork = \
- get_lapack_funcs(('hetrd', 'hetrd_lwork'), (A,))
- assert_raises(ValueError, hetrd, A)
- # Tests for n = 1 currently fail with
- # ```
- # ValueError: failed to create intent(cache|hide)|optional array--
- # must have defined dimensions but got (0,)
- # ```
- # This is a NumPy issue
- # <https://github.com/numpy/numpy/issues/9617>.
- # TODO once the issue has been resolved, test for n=1
- # some upper triangular array
- n = 3
- A = np.zeros((n, n), dtype=complex_dtype)
- A[np.triu_indices_from(A)] = (
- np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
- + 1j * np.arange(1, n*(n+1)//2+1, dtype=real_dtype)
- )
- np.fill_diagonal(A, np.real(np.diag(A)))
- # query lwork
- lwork, info = hetrd_lwork(n)
- assert_equal(info, 0)
- # check lower=1 behavior (shouldn't do much since the matrix is
- # upper triangular)
- data, d, e, tau, info = hetrd(A, lower=1, lwork=lwork)
- assert_equal(info, 0)
- assert_allclose(data, A, atol=5*np.finfo(real_dtype).eps, rtol=1.0)
- assert_allclose(d, np.real(np.diag(A)))
- assert_allclose(e, 0.0)
- assert_allclose(tau, 0.0)
- # and now for the proper test (lower=0 is the default)
- data, d, e, tau, info = hetrd(A, lwork=lwork)
- assert_equal(info, 0)
- # assert Q^T*A*Q = tridiag(e, d, e)
- # build tridiagonal matrix
- T = np.zeros_like(A, dtype=real_dtype)
- k = np.arange(A.shape[0], dtype=int)
- T[k, k] = d
- k2 = np.arange(A.shape[0]-1, dtype=int)
- T[k2+1, k2] = e
- T[k2, k2+1] = e
- # build Q
- Q = np.eye(n, n, dtype=complex_dtype)
- for i in range(n-1):
- v = np.zeros(n, dtype=complex_dtype)
- v[:i] = data[:i, i+1]
- v[i] = 1.0
- H = np.eye(n, n, dtype=complex_dtype) \
- - tau[i] * np.outer(v, np.conj(v))
- Q = np.dot(H, Q)
- # Make matrix fully Hermetian
- i_lower = np.tril_indices(n, -1)
- A[i_lower] = np.conj(A.T[i_lower])
- QHAQ = np.dot(np.conj(Q.T), np.dot(A, Q))
- # disable rtol here since some values in QTAQ and T are very close
- # to 0.
- assert_allclose(
- QHAQ, T, atol=10*np.finfo(real_dtype).eps, rtol=1.0
- )
- def test_gglse():
- # Example data taken from NAG manual
- for ind, dtype in enumerate(DTYPES):
- # DTYPES = <s,d,c,z> gglse
- func, func_lwork = get_lapack_funcs(('gglse', 'gglse_lwork'),
- dtype=dtype)
- lwork = _compute_lwork(func_lwork, m=6, n=4, p=2)
- # For <s,d>gglse
- if ind < 2:
- a = np.array([[-0.57, -1.28, -0.39, 0.25],
- [-1.93, 1.08, -0.31, -2.14],
- [2.30, 0.24, 0.40, -0.35],
- [-1.93, 0.64, -0.66, 0.08],
- [0.15, 0.30, 0.15, -2.13],
- [-0.02, 1.03, -1.43, 0.50]], dtype=dtype)
- c = np.array([-1.50, -2.14, 1.23, -0.54, -1.68, 0.82], dtype=dtype)
- d = np.array([0., 0.], dtype=dtype)
- # For <s,d>gglse
- else:
- a = np.array([[0.96-0.81j, -0.03+0.96j, -0.91+2.06j, -0.05+0.41j],
- [-0.98+1.98j, -1.20+0.19j, -0.66+0.42j, -0.81+0.56j],
- [0.62-0.46j, 1.01+0.02j, 0.63-0.17j, -1.11+0.60j],
- [0.37+0.38j, 0.19-0.54j, -0.98-0.36j, 0.22-0.20j],
- [0.83+0.51j, 0.20+0.01j, -0.17-0.46j, 1.47+1.59j],
- [1.08-0.28j, 0.20-0.12j, -0.07+1.23j, 0.26+0.26j]])
- c = np.array([[-2.54+0.09j],
- [1.65-2.26j],
- [-2.11-3.96j],
- [1.82+3.30j],
- [-6.41+3.77j],
- [2.07+0.66j]])
- d = np.zeros(2, dtype=dtype)
- b = np.array([[1., 0., -1., 0.], [0., 1., 0., -1.]], dtype=dtype)
- _, _, _, result, _ = func(a, b, c, d, lwork=lwork)
- if ind < 2:
- expected = np.array([0.48904455,
- 0.99754786,
- 0.48904455,
- 0.99754786])
- else:
- expected = np.array([1.08742917-1.96205783j,
- -0.74093902+3.72973919j,
- 1.08742917-1.96205759j,
- -0.74093896+3.72973895j])
- assert_array_almost_equal(result, expected, decimal=4)
- def test_sycon_hecon():
- seed(1234)
- for ind, dtype in enumerate(DTYPES+COMPLEX_DTYPES):
- # DTYPES + COMPLEX DTYPES = <s,d,c,z> sycon + <c,z>hecon
- n = 10
- # For <s,d,c,z>sycon
- if ind < 4:
- func_lwork = get_lapack_funcs('sytrf_lwork', dtype=dtype)
- funcon, functrf = get_lapack_funcs(('sycon', 'sytrf'), dtype=dtype)
- A = (rand(n, n)).astype(dtype)
- # For <c,z>hecon
- else:
- func_lwork = get_lapack_funcs('hetrf_lwork', dtype=dtype)
- funcon, functrf = get_lapack_funcs(('hecon', 'hetrf'), dtype=dtype)
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- # Since sycon only refers to upper/lower part, conj() is safe here.
- A = (A + A.conj().T)/2 + 2*np.eye(n, dtype=dtype)
- anorm = np.linalg.norm(A, 1)
- lwork = _compute_lwork(func_lwork, n)
- ldu, ipiv, _ = functrf(A, lwork=lwork, lower=1)
- rcond, _ = funcon(a=ldu, ipiv=ipiv, anorm=anorm, lower=1)
- # The error is at most 1-fold
- assert_(abs(1/rcond - np.linalg.cond(A, p=1))*rcond < 1)
- def test_sygst():
- seed(1234)
- for ind, dtype in enumerate(REAL_DTYPES):
- # DTYPES = <s,d> sygst
- n = 10
- potrf, sygst, syevd, sygvd = get_lapack_funcs(('potrf', 'sygst',
- 'syevd', 'sygvd'),
- dtype=dtype)
- A = rand(n, n).astype(dtype)
- A = (A + A.T)/2
- # B must be positive definite
- B = rand(n, n).astype(dtype)
- B = (B + B.T)/2 + 2 * np.eye(n, dtype=dtype)
- # Perform eig (sygvd)
- _, eig_gvd, info = sygvd(A, B)
- assert_(info == 0)
- # Convert to std problem potrf
- b, info = potrf(B)
- assert_(info == 0)
- a, info = sygst(A, b)
- assert_(info == 0)
- eig, _, info = syevd(a)
- assert_(info == 0)
- assert_allclose(eig, eig_gvd, rtol=1e-4)
- def test_hegst():
- seed(1234)
- for ind, dtype in enumerate(COMPLEX_DTYPES):
- # DTYPES = <c,z> hegst
- n = 10
- potrf, hegst, heevd, hegvd = get_lapack_funcs(('potrf', 'hegst',
- 'heevd', 'hegvd'),
- dtype=dtype)
- A = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
- A = (A + A.conj().T)/2
- # B must be positive definite
- B = rand(n, n).astype(dtype) + 1j * rand(n, n).astype(dtype)
- B = (B + B.conj().T)/2 + 2 * np.eye(n, dtype=dtype)
- # Perform eig (hegvd)
- _, eig_gvd, info = hegvd(A, B)
- assert_(info == 0)
- # Convert to std problem potrf
- b, info = potrf(B)
- assert_(info == 0)
- a, info = hegst(A, b)
- assert_(info == 0)
- eig, _, info = heevd(a)
- assert_(info == 0)
- assert_allclose(eig, eig_gvd, rtol=1e-4)
- def test_tzrzf():
- """
- This test performs an RZ decomposition in which an m x n upper trapezoidal
- array M (m <= n) is factorized as M = [R 0] * Z where R is upper triangular
- and Z is unitary.
- """
- seed(1234)
- m, n = 10, 15
- for ind, dtype in enumerate(DTYPES):
- tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
- dtype=dtype)
- lwork = _compute_lwork(tzrzf_lw, m, n)
- if ind < 2:
- A = triu(rand(m, n).astype(dtype))
- else:
- A = triu((rand(m, n) + rand(m, n)*1j).astype(dtype))
- # assert wrong shape arg, f2py returns generic error
- assert_raises(Exception, tzrzf, A.T)
- rz, tau, info = tzrzf(A, lwork=lwork)
- # Check success
- assert_(info == 0)
- # Get Z manually for comparison
- R = np.hstack((rz[:, :m], np.zeros((m, n-m), dtype=dtype)))
- V = np.hstack((np.eye(m, dtype=dtype), rz[:, m:]))
- Id = np.eye(n, dtype=dtype)
- ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(m)]
- Z = reduce(np.dot, ref)
- assert_allclose(R.dot(Z) - A, zeros_like(A, dtype=dtype),
- atol=10*np.spacing(dtype(1.0).real), rtol=0.)
- def test_tfsm():
- """
- Test for solving a linear system with the coefficient matrix is a
- triangular array stored in Full Packed (RFP) format.
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = triu(rand(n, n) + rand(n, n)*1j + eye(n)).astype(dtype)
- trans = 'C'
- else:
- A = triu(rand(n, n) + eye(n)).astype(dtype)
- trans = 'T'
- trttf, tfttr, tfsm = get_lapack_funcs(('trttf', 'tfttr', 'tfsm'),
- dtype=dtype)
- Afp, _ = trttf(A)
- B = rand(n, 2).astype(dtype)
- soln = tfsm(-1, Afp, B)
- assert_array_almost_equal(soln, solve(-A, B),
- decimal=4 if ind % 2 == 0 else 6)
- soln = tfsm(-1, Afp, B, trans=trans)
- assert_array_almost_equal(soln, solve(-A.conj().T, B),
- decimal=4 if ind % 2 == 0 else 6)
- # Make A, unit diagonal
- A[np.arange(n), np.arange(n)] = dtype(1.)
- soln = tfsm(-1, Afp, B, trans=trans, diag='U')
- assert_array_almost_equal(soln, solve(-A.conj().T, B),
- decimal=4 if ind % 2 == 0 else 6)
- # Change side
- B2 = rand(3, n).astype(dtype)
- soln = tfsm(-1, Afp, B2, trans=trans, diag='U', side='R')
- assert_array_almost_equal(soln, solve(-A, B2.T).conj().T,
- decimal=4 if ind % 2 == 0 else 6)
- def test_ormrz_unmrz():
- """
- This test performs a matrix multiplication with an arbitrary m x n matric C
- and a unitary matrix Q without explicitly forming the array. The array data
- is encoded in the rectangular part of A which is obtained from ?TZRZF. Q
- size is inferred by m, n, side keywords.
- """
- seed(1234)
- qm, qn, cn = 10, 15, 15
- for ind, dtype in enumerate(DTYPES):
- tzrzf, tzrzf_lw = get_lapack_funcs(('tzrzf', 'tzrzf_lwork'),
- dtype=dtype)
- lwork_rz = _compute_lwork(tzrzf_lw, qm, qn)
- if ind < 2:
- A = triu(rand(qm, qn).astype(dtype))
- C = rand(cn, cn).astype(dtype)
- orun_mrz, orun_mrz_lw = get_lapack_funcs(('ormrz', 'ormrz_lwork'),
- dtype=dtype)
- else:
- A = triu((rand(qm, qn) + rand(qm, qn)*1j).astype(dtype))
- C = (rand(cn, cn) + rand(cn, cn)*1j).astype(dtype)
- orun_mrz, orun_mrz_lw = get_lapack_funcs(('unmrz', 'unmrz_lwork'),
- dtype=dtype)
- lwork_mrz = _compute_lwork(orun_mrz_lw, cn, cn)
- rz, tau, info = tzrzf(A, lwork=lwork_rz)
- # Get Q manually for comparison
- V = np.hstack((np.eye(qm, dtype=dtype), rz[:, qm:]))
- Id = np.eye(qn, dtype=dtype)
- ref = [Id-tau[x]*V[[x], :].T.dot(V[[x], :].conj()) for x in range(qm)]
- Q = reduce(np.dot, ref)
- # Now that we have Q, we can test whether lapack results agree with
- # each case of CQ, CQ^H, QC, and QC^H
- trans = 'T' if ind < 2 else 'C'
- tol = 10*np.spacing(dtype(1.0).real)
- cq, info = orun_mrz(rz, tau, C, lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - Q.dot(C), zeros_like(C), atol=tol, rtol=0.)
- cq, info = orun_mrz(rz, tau, C, trans=trans, lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - Q.conj().T.dot(C), zeros_like(C), atol=tol,
- rtol=0.)
- cq, info = orun_mrz(rz, tau, C, side='R', lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - C.dot(Q), zeros_like(C), atol=tol, rtol=0.)
- cq, info = orun_mrz(rz, tau, C, side='R', trans=trans, lwork=lwork_mrz)
- assert_(info == 0)
- assert_allclose(cq - C.dot(Q.conj().T), zeros_like(C), atol=tol,
- rtol=0.)
- def test_tfttr_trttf():
- """
- Test conversion routines between the Rectengular Full Packed (RFP) format
- and Standard Triangular Array (TR)
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- transr = 'C'
- else:
- A_full = (rand(n, n)).astype(dtype)
- transr = 'T'
- trttf, tfttr = get_lapack_funcs(('trttf', 'tfttr'), dtype=dtype)
- A_tf_U, info = trttf(A_full)
- assert_(info == 0)
- A_tf_L, info = trttf(A_full, uplo='L')
- assert_(info == 0)
- A_tf_U_T, info = trttf(A_full, transr=transr, uplo='U')
- assert_(info == 0)
- A_tf_L_T, info = trttf(A_full, transr=transr, uplo='L')
- assert_(info == 0)
- # Create the RFP array manually (n is even!)
- A_tf_U_m = zeros((n+1, n//2), dtype=dtype)
- A_tf_U_m[:-1, :] = triu(A_full)[:, n//2:]
- A_tf_U_m[n//2+1:, :] += triu(A_full)[:n//2, :n//2].conj().T
- A_tf_L_m = zeros((n+1, n//2), dtype=dtype)
- A_tf_L_m[1:, :] = tril(A_full)[:, :n//2]
- A_tf_L_m[:n//2, :] += tril(A_full)[n//2:, n//2:].conj().T
- assert_array_almost_equal(A_tf_U, A_tf_U_m.reshape(-1, order='F'))
- assert_array_almost_equal(A_tf_U_T,
- A_tf_U_m.conj().T.reshape(-1, order='F'))
- assert_array_almost_equal(A_tf_L, A_tf_L_m.reshape(-1, order='F'))
- assert_array_almost_equal(A_tf_L_T,
- A_tf_L_m.conj().T.reshape(-1, order='F'))
- # Get the original array from RFP
- A_tr_U, info = tfttr(n, A_tf_U)
- assert_(info == 0)
- A_tr_L, info = tfttr(n, A_tf_L, uplo='L')
- assert_(info == 0)
- A_tr_U_T, info = tfttr(n, A_tf_U_T, transr=transr, uplo='U')
- assert_(info == 0)
- A_tr_L_T, info = tfttr(n, A_tf_L_T, transr=transr, uplo='L')
- assert_(info == 0)
- assert_array_almost_equal(A_tr_U, triu(A_full))
- assert_array_almost_equal(A_tr_U_T, triu(A_full))
- assert_array_almost_equal(A_tr_L, tril(A_full))
- assert_array_almost_equal(A_tr_L_T, tril(A_full))
- def test_tpttr_trttp():
- """
- Test conversion routines between the Rectengular Full Packed (RFP) format
- and Standard Triangular Array (TR)
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A_full = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- else:
- A_full = (rand(n, n)).astype(dtype)
- trttp, tpttr = get_lapack_funcs(('trttp', 'tpttr'), dtype=dtype)
- A_tp_U, info = trttp(A_full)
- assert_(info == 0)
- A_tp_L, info = trttp(A_full, uplo='L')
- assert_(info == 0)
- # Create the TP array manually
- inds = tril_indices(n)
- A_tp_U_m = zeros(n*(n+1)//2, dtype=dtype)
- A_tp_U_m[:] = (triu(A_full).T)[inds]
- inds = triu_indices(n)
- A_tp_L_m = zeros(n*(n+1)//2, dtype=dtype)
- A_tp_L_m[:] = (tril(A_full).T)[inds]
- assert_array_almost_equal(A_tp_U, A_tp_U_m)
- assert_array_almost_equal(A_tp_L, A_tp_L_m)
- # Get the original array from TP
- A_tr_U, info = tpttr(n, A_tp_U)
- assert_(info == 0)
- A_tr_L, info = tpttr(n, A_tp_L, uplo='L')
- assert_(info == 0)
- assert_array_almost_equal(A_tr_U, triu(A_full))
- assert_array_almost_equal(A_tr_L, tril(A_full))
- def test_pftrf():
- """
- Test Cholesky factorization of a positive definite Rectengular Full
- Packed (RFP) format array
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- pftrf, trttf, tfttr = get_lapack_funcs(('pftrf', 'trttf', 'tfttr'),
- dtype=dtype)
- # Get the original array from TP
- Afp, info = trttf(A)
- Achol_rfp, info = pftrf(n, Afp)
- assert_(info == 0)
- A_chol_r, _ = tfttr(n, Achol_rfp)
- Achol = cholesky(A)
- assert_array_almost_equal(A_chol_r, Achol)
- def test_pftri():
- """
- Test Cholesky factorization of a positive definite Rectengular Full
- Packed (RFP) format array to find its inverse
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- pftri, pftrf, trttf, tfttr = get_lapack_funcs(('pftri',
- 'pftrf',
- 'trttf',
- 'tfttr'),
- dtype=dtype)
- # Get the original array from TP
- Afp, info = trttf(A)
- A_chol_rfp, info = pftrf(n, Afp)
- A_inv_rfp, info = pftri(n, A_chol_rfp)
- assert_(info == 0)
- A_inv_r, _ = tfttr(n, A_inv_rfp)
- Ainv = inv(A)
- assert_array_almost_equal(A_inv_r, triu(Ainv),
- decimal=4 if ind % 2 == 0 else 6)
- def test_pftrs():
- """
- Test Cholesky factorization of a positive definite Rectengular Full
- Packed (RFP) format array and solve a linear system
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- B = ones((n, 3), dtype=dtype)
- Bf1 = ones((n+2, 3), dtype=dtype)
- Bf2 = ones((n-2, 3), dtype=dtype)
- pftrs, pftrf, trttf, tfttr = get_lapack_funcs(('pftrs',
- 'pftrf',
- 'trttf',
- 'tfttr'),
- dtype=dtype)
- # Get the original array from TP
- Afp, info = trttf(A)
- A_chol_rfp, info = pftrf(n, Afp)
- # larger B arrays shouldn't segfault
- soln, info = pftrs(n, A_chol_rfp, Bf1)
- assert_(info == 0)
- assert_raises(Exception, pftrs, n, A_chol_rfp, Bf2)
- soln, info = pftrs(n, A_chol_rfp, B)
- assert_(info == 0)
- assert_array_almost_equal(solve(A, B), soln,
- decimal=4 if ind % 2 == 0 else 6)
- def test_sfrk_hfrk():
- """
- Test for performing a symmetric rank-k operation for matrix in RFP format.
- """
- seed(1234)
- for ind, dtype in enumerate(DTYPES):
- n = 20
- if ind > 1:
- A = (rand(n, n) + rand(n, n)*1j).astype(dtype)
- A = A + A.conj().T + n*eye(n)
- else:
- A = (rand(n, n)).astype(dtype)
- A = A + A.T + n*eye(n)
- prefix = 's'if ind < 2 else 'h'
- trttf, tfttr, shfrk = get_lapack_funcs(('trttf', 'tfttr', '{}frk'
- ''.format(prefix)),
- dtype=dtype)
- Afp, _ = trttf(A)
- C = np.random.rand(n, 2).astype(dtype)
- Afp_out = shfrk(n, 2, -1, C, 2, Afp)
- A_out, _ = tfttr(n, Afp_out)
- assert_array_almost_equal(A_out, triu(-C.dot(C.conj().T) + 2*A),
- decimal=4 if ind % 2 == 0 else 6)
|