1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624 |
- # Copyright (C) 2003-2005 Peter J. Verveer
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- #
- # 2. Redistributions in binary form must reproduce the above
- # copyright notice, this list of conditions and the following
- # disclaimer in the documentation and/or other materials provided
- # with the distribution.
- #
- # 3. The name of the author may not be used to endorse or promote
- # products derived from this software without specific prior
- # written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- from __future__ import division, print_function, absolute_import
- import math
- import sys
- import numpy
- from numpy import fft
- from numpy.testing import (assert_, assert_equal, assert_array_equal,
- assert_array_almost_equal, assert_almost_equal)
- import pytest
- from pytest import raises as assert_raises
- from scipy._lib._numpy_compat import suppress_warnings
- import scipy.ndimage as ndimage
- eps = 1e-12
- def sumsq(a, b):
- return math.sqrt(((a - b)**2).sum())
- class TestNdimage:
- def setup_method(self):
- # list of numarray data types
- self.integer_types = [
- numpy.int8, numpy.uint8, numpy.int16, numpy.uint16,
- numpy.int32, numpy.uint32, numpy.int64, numpy.uint64]
- self.float_types = [numpy.float32, numpy.float64]
- self.types = self.integer_types + self.float_types
- # list of boundary modes:
- self.modes = ['nearest', 'wrap', 'reflect', 'mirror', 'constant']
- def test_correlate01(self):
- array = numpy.array([1, 2])
- weights = numpy.array([2])
- expected = [2, 4]
- output = ndimage.correlate(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.correlate1d(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve1d(array, weights)
- assert_array_almost_equal(output, expected)
- def test_correlate02(self):
- array = numpy.array([1, 2, 3])
- kernel = numpy.array([1])
- output = ndimage.correlate(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.convolve(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.correlate1d(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.convolve1d(array, kernel)
- assert_array_almost_equal(array, output)
- def test_correlate03(self):
- array = numpy.array([1])
- weights = numpy.array([1, 1])
- expected = [2]
- output = ndimage.correlate(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.correlate1d(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve1d(array, weights)
- assert_array_almost_equal(output, expected)
- def test_correlate04(self):
- array = numpy.array([1, 2])
- tcor = [2, 3]
- tcov = [3, 4]
- weights = numpy.array([1, 1])
- output = ndimage.correlate(array, weights)
- assert_array_almost_equal(output, tcor)
- output = ndimage.convolve(array, weights)
- assert_array_almost_equal(output, tcov)
- output = ndimage.correlate1d(array, weights)
- assert_array_almost_equal(output, tcor)
- output = ndimage.convolve1d(array, weights)
- assert_array_almost_equal(output, tcov)
- def test_correlate05(self):
- array = numpy.array([1, 2, 3])
- tcor = [2, 3, 5]
- tcov = [3, 5, 6]
- kernel = numpy.array([1, 1])
- output = ndimage.correlate(array, kernel)
- assert_array_almost_equal(tcor, output)
- output = ndimage.convolve(array, kernel)
- assert_array_almost_equal(tcov, output)
- output = ndimage.correlate1d(array, kernel)
- assert_array_almost_equal(tcor, output)
- output = ndimage.convolve1d(array, kernel)
- assert_array_almost_equal(tcov, output)
- def test_correlate06(self):
- array = numpy.array([1, 2, 3])
- tcor = [9, 14, 17]
- tcov = [7, 10, 15]
- weights = numpy.array([1, 2, 3])
- output = ndimage.correlate(array, weights)
- assert_array_almost_equal(output, tcor)
- output = ndimage.convolve(array, weights)
- assert_array_almost_equal(output, tcov)
- output = ndimage.correlate1d(array, weights)
- assert_array_almost_equal(output, tcor)
- output = ndimage.convolve1d(array, weights)
- assert_array_almost_equal(output, tcov)
- def test_correlate07(self):
- array = numpy.array([1, 2, 3])
- expected = [5, 8, 11]
- weights = numpy.array([1, 2, 1])
- output = ndimage.correlate(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.correlate1d(array, weights)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve1d(array, weights)
- assert_array_almost_equal(output, expected)
- def test_correlate08(self):
- array = numpy.array([1, 2, 3])
- tcor = [1, 2, 5]
- tcov = [3, 6, 7]
- weights = numpy.array([1, 2, -1])
- output = ndimage.correlate(array, weights)
- assert_array_almost_equal(output, tcor)
- output = ndimage.convolve(array, weights)
- assert_array_almost_equal(output, tcov)
- output = ndimage.correlate1d(array, weights)
- assert_array_almost_equal(output, tcor)
- output = ndimage.convolve1d(array, weights)
- assert_array_almost_equal(output, tcov)
- def test_correlate09(self):
- array = []
- kernel = numpy.array([1, 1])
- output = ndimage.correlate(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.convolve(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.correlate1d(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.convolve1d(array, kernel)
- assert_array_almost_equal(array, output)
- def test_correlate10(self):
- array = [[]]
- kernel = numpy.array([[1, 1]])
- output = ndimage.correlate(array, kernel)
- assert_array_almost_equal(array, output)
- output = ndimage.convolve(array, kernel)
- assert_array_almost_equal(array, output)
- def test_correlate11(self):
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]])
- kernel = numpy.array([[1, 1],
- [1, 1]])
- output = ndimage.correlate(array, kernel)
- assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
- output = ndimage.convolve(array, kernel)
- assert_array_almost_equal([[12, 16, 18], [18, 22, 24]], output)
- def test_correlate12(self):
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]])
- kernel = numpy.array([[1, 0],
- [0, 1]])
- output = ndimage.correlate(array, kernel)
- assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
- output = ndimage.convolve(array, kernel)
- assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
- def test_correlate13(self):
- kernel = numpy.array([[1, 0],
- [0, 1]])
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]], type1)
- for type2 in self.types:
- output = ndimage.correlate(array, kernel, output=type2)
- assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
- assert_equal(output.dtype.type, type2)
- output = ndimage.convolve(array, kernel,
- output=type2)
- assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
- assert_equal(output.dtype.type, type2)
- def test_correlate14(self):
- kernel = numpy.array([[1, 0],
- [0, 1]])
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]], type1)
- for type2 in self.types:
- output = numpy.zeros(array.shape, type2)
- ndimage.correlate(array, kernel,
- output=output)
- assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
- assert_equal(output.dtype.type, type2)
- ndimage.convolve(array, kernel, output=output)
- assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
- assert_equal(output.dtype.type, type2)
- def test_correlate15(self):
- kernel = numpy.array([[1, 0],
- [0, 1]])
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]], type1)
- output = ndimage.correlate(array, kernel,
- output=numpy.float32)
- assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
- assert_equal(output.dtype.type, numpy.float32)
- output = ndimage.convolve(array, kernel,
- output=numpy.float32)
- assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
- assert_equal(output.dtype.type, numpy.float32)
- def test_correlate16(self):
- kernel = numpy.array([[0.5, 0],
- [0, 0.5]])
- for type1 in self.types:
- array = numpy.array([[1, 2, 3], [4, 5, 6]], type1)
- output = ndimage.correlate(array, kernel, output=numpy.float32)
- assert_array_almost_equal([[1, 1.5, 2.5], [2.5, 3, 4]], output)
- assert_equal(output.dtype.type, numpy.float32)
- output = ndimage.convolve(array, kernel, output=numpy.float32)
- assert_array_almost_equal([[3, 4, 4.5], [4.5, 5.5, 6]], output)
- assert_equal(output.dtype.type, numpy.float32)
- def test_correlate17(self):
- array = numpy.array([1, 2, 3])
- tcor = [3, 5, 6]
- tcov = [2, 3, 5]
- kernel = numpy.array([1, 1])
- output = ndimage.correlate(array, kernel, origin=-1)
- assert_array_almost_equal(tcor, output)
- output = ndimage.convolve(array, kernel, origin=-1)
- assert_array_almost_equal(tcov, output)
- output = ndimage.correlate1d(array, kernel, origin=-1)
- assert_array_almost_equal(tcor, output)
- output = ndimage.convolve1d(array, kernel, origin=-1)
- assert_array_almost_equal(tcov, output)
- def test_correlate18(self):
- kernel = numpy.array([[1, 0],
- [0, 1]])
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]], type1)
- output = ndimage.correlate(array, kernel,
- output=numpy.float32,
- mode='nearest', origin=-1)
- assert_array_almost_equal([[6, 8, 9], [9, 11, 12]], output)
- assert_equal(output.dtype.type, numpy.float32)
- output = ndimage.convolve(array, kernel,
- output=numpy.float32,
- mode='nearest', origin=-1)
- assert_array_almost_equal([[2, 3, 5], [5, 6, 8]], output)
- assert_equal(output.dtype.type, numpy.float32)
- def test_correlate19(self):
- kernel = numpy.array([[1, 0],
- [0, 1]])
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [4, 5, 6]], type1)
- output = ndimage.correlate(array, kernel,
- output=numpy.float32,
- mode='nearest', origin=[-1, 0])
- assert_array_almost_equal([[5, 6, 8], [8, 9, 11]], output)
- assert_equal(output.dtype.type, numpy.float32)
- output = ndimage.convolve(array, kernel,
- output=numpy.float32,
- mode='nearest', origin=[-1, 0])
- assert_array_almost_equal([[3, 5, 6], [6, 8, 9]], output)
- assert_equal(output.dtype.type, numpy.float32)
- def test_correlate20(self):
- weights = numpy.array([1, 2, 1])
- expected = [[5, 10, 15], [7, 14, 21]]
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [2, 4, 6]], type1)
- for type2 in self.types:
- output = numpy.zeros((2, 3), type2)
- ndimage.correlate1d(array, weights, axis=0,
- output=output)
- assert_array_almost_equal(output, expected)
- ndimage.convolve1d(array, weights, axis=0,
- output=output)
- assert_array_almost_equal(output, expected)
- def test_correlate21(self):
- array = numpy.array([[1, 2, 3],
- [2, 4, 6]])
- expected = [[5, 10, 15], [7, 14, 21]]
- weights = numpy.array([1, 2, 1])
- output = ndimage.correlate1d(array, weights, axis=0)
- assert_array_almost_equal(output, expected)
- output = ndimage.convolve1d(array, weights, axis=0)
- assert_array_almost_equal(output, expected)
- def test_correlate22(self):
- weights = numpy.array([1, 2, 1])
- expected = [[6, 12, 18], [6, 12, 18]]
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [2, 4, 6]], type1)
- for type2 in self.types:
- output = numpy.zeros((2, 3), type2)
- ndimage.correlate1d(array, weights, axis=0,
- mode='wrap', output=output)
- assert_array_almost_equal(output, expected)
- ndimage.convolve1d(array, weights, axis=0,
- mode='wrap', output=output)
- assert_array_almost_equal(output, expected)
- def test_correlate23(self):
- weights = numpy.array([1, 2, 1])
- expected = [[5, 10, 15], [7, 14, 21]]
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [2, 4, 6]], type1)
- for type2 in self.types:
- output = numpy.zeros((2, 3), type2)
- ndimage.correlate1d(array, weights, axis=0,
- mode='nearest', output=output)
- assert_array_almost_equal(output, expected)
- ndimage.convolve1d(array, weights, axis=0,
- mode='nearest', output=output)
- assert_array_almost_equal(output, expected)
- def test_correlate24(self):
- weights = numpy.array([1, 2, 1])
- tcor = [[7, 14, 21], [8, 16, 24]]
- tcov = [[4, 8, 12], [5, 10, 15]]
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [2, 4, 6]], type1)
- for type2 in self.types:
- output = numpy.zeros((2, 3), type2)
- ndimage.correlate1d(array, weights, axis=0,
- mode='nearest', output=output, origin=-1)
- assert_array_almost_equal(output, tcor)
- ndimage.convolve1d(array, weights, axis=0,
- mode='nearest', output=output, origin=-1)
- assert_array_almost_equal(output, tcov)
- def test_correlate25(self):
- weights = numpy.array([1, 2, 1])
- tcor = [[4, 8, 12], [5, 10, 15]]
- tcov = [[7, 14, 21], [8, 16, 24]]
- for type1 in self.types:
- array = numpy.array([[1, 2, 3],
- [2, 4, 6]], type1)
- for type2 in self.types:
- output = numpy.zeros((2, 3), type2)
- ndimage.correlate1d(array, weights, axis=0,
- mode='nearest', output=output, origin=1)
- assert_array_almost_equal(output, tcor)
- ndimage.convolve1d(array, weights, axis=0,
- mode='nearest', output=output, origin=1)
- assert_array_almost_equal(output, tcov)
- def test_gauss01(self):
- input = numpy.array([[1, 2, 3],
- [2, 4, 6]], numpy.float32)
- output = ndimage.gaussian_filter(input, 0)
- assert_array_almost_equal(output, input)
- def test_gauss02(self):
- input = numpy.array([[1, 2, 3],
- [2, 4, 6]], numpy.float32)
- output = ndimage.gaussian_filter(input, 1.0)
- assert_equal(input.dtype, output.dtype)
- assert_equal(input.shape, output.shape)
- def test_gauss03(self):
- # single precision data"
- input = numpy.arange(100 * 100).astype(numpy.float32)
- input.shape = (100, 100)
- output = ndimage.gaussian_filter(input, [1.0, 1.0])
- assert_equal(input.dtype, output.dtype)
- assert_equal(input.shape, output.shape)
- # input.sum() is 49995000.0. With single precision floats, we can't
- # expect more than 8 digits of accuracy, so use decimal=0 in this test.
- assert_almost_equal(output.sum(dtype='d'), input.sum(dtype='d'),
- decimal=0)
- assert_(sumsq(input, output) > 1.0)
- def test_gauss04(self):
- input = numpy.arange(100 * 100).astype(numpy.float32)
- input.shape = (100, 100)
- otype = numpy.float64
- output = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
- assert_equal(output.dtype.type, numpy.float64)
- assert_equal(input.shape, output.shape)
- assert_(sumsq(input, output) > 1.0)
- def test_gauss05(self):
- input = numpy.arange(100 * 100).astype(numpy.float32)
- input.shape = (100, 100)
- otype = numpy.float64
- output = ndimage.gaussian_filter(input, [1.0, 1.0],
- order=1, output=otype)
- assert_equal(output.dtype.type, numpy.float64)
- assert_equal(input.shape, output.shape)
- assert_(sumsq(input, output) > 1.0)
- def test_gauss06(self):
- input = numpy.arange(100 * 100).astype(numpy.float32)
- input.shape = (100, 100)
- otype = numpy.float64
- output1 = ndimage.gaussian_filter(input, [1.0, 1.0], output=otype)
- output2 = ndimage.gaussian_filter(input, 1.0, output=otype)
- assert_array_almost_equal(output1, output2)
- def test_prewitt01(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
- t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
- output = ndimage.prewitt(array, 0)
- assert_array_almost_equal(t, output)
- def test_prewitt02(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
- t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 1)
- output = numpy.zeros(array.shape, type_)
- ndimage.prewitt(array, 0, output)
- assert_array_almost_equal(t, output)
- def test_prewitt03(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
- t = ndimage.correlate1d(t, [1.0, 1.0, 1.0], 0)
- output = ndimage.prewitt(array, 1)
- assert_array_almost_equal(t, output)
- def test_prewitt04(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.prewitt(array, -1)
- output = ndimage.prewitt(array, 1)
- assert_array_almost_equal(t, output)
- def test_sobel01(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
- t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
- output = ndimage.sobel(array, 0)
- assert_array_almost_equal(t, output)
- def test_sobel02(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 0)
- t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 1)
- output = numpy.zeros(array.shape, type_)
- ndimage.sobel(array, 0, output)
- assert_array_almost_equal(t, output)
- def test_sobel03(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.correlate1d(array, [-1.0, 0.0, 1.0], 1)
- t = ndimage.correlate1d(t, [1.0, 2.0, 1.0], 0)
- output = numpy.zeros(array.shape, type_)
- output = ndimage.sobel(array, 1)
- assert_array_almost_equal(t, output)
- def test_sobel04(self):
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- t = ndimage.sobel(array, -1)
- output = ndimage.sobel(array, 1)
- assert_array_almost_equal(t, output)
- def test_laplace01(self):
- for type_ in [numpy.int32, numpy.float32, numpy.float64]:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_) * 100
- tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
- tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
- output = ndimage.laplace(array)
- assert_array_almost_equal(tmp1 + tmp2, output)
- def test_laplace02(self):
- for type_ in [numpy.int32, numpy.float32, numpy.float64]:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_) * 100
- tmp1 = ndimage.correlate1d(array, [1, -2, 1], 0)
- tmp2 = ndimage.correlate1d(array, [1, -2, 1], 1)
- output = numpy.zeros(array.shape, type_)
- ndimage.laplace(array, output=output)
- assert_array_almost_equal(tmp1 + tmp2, output)
- def test_gaussian_laplace01(self):
- for type_ in [numpy.int32, numpy.float32, numpy.float64]:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_) * 100
- tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
- tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
- output = ndimage.gaussian_laplace(array, 1.0)
- assert_array_almost_equal(tmp1 + tmp2, output)
- def test_gaussian_laplace02(self):
- for type_ in [numpy.int32, numpy.float32, numpy.float64]:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_) * 100
- tmp1 = ndimage.gaussian_filter(array, 1.0, [2, 0])
- tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 2])
- output = numpy.zeros(array.shape, type_)
- ndimage.gaussian_laplace(array, 1.0, output)
- assert_array_almost_equal(tmp1 + tmp2, output)
- def test_generic_laplace01(self):
- def derivative2(input, axis, output, mode, cval, a, b):
- sigma = [a, b / 2.0]
- input = numpy.asarray(input)
- order = [0] * input.ndim
- order[axis] = 2
- return ndimage.gaussian_filter(input, sigma, order,
- output, mode, cval)
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- output = numpy.zeros(array.shape, type_)
- tmp = ndimage.generic_laplace(array, derivative2,
- extra_arguments=(1.0,),
- extra_keywords={'b': 2.0})
- ndimage.gaussian_laplace(array, 1.0, output)
- assert_array_almost_equal(tmp, output)
- def test_gaussian_gradient_magnitude01(self):
- for type_ in [numpy.int32, numpy.float32, numpy.float64]:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_) * 100
- tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
- tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
- output = ndimage.gaussian_gradient_magnitude(array, 1.0)
- expected = tmp1 * tmp1 + tmp2 * tmp2
- expected = numpy.sqrt(expected).astype(type_)
- assert_array_almost_equal(expected, output)
- def test_gaussian_gradient_magnitude02(self):
- for type_ in [numpy.int32, numpy.float32, numpy.float64]:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_) * 100
- tmp1 = ndimage.gaussian_filter(array, 1.0, [1, 0])
- tmp2 = ndimage.gaussian_filter(array, 1.0, [0, 1])
- output = numpy.zeros(array.shape, type_)
- ndimage.gaussian_gradient_magnitude(array, 1.0, output)
- expected = tmp1 * tmp1 + tmp2 * tmp2
- expected = numpy.sqrt(expected).astype(type_)
- assert_array_almost_equal(expected, output)
- def test_generic_gradient_magnitude01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], numpy.float64)
- def derivative(input, axis, output, mode, cval, a, b):
- sigma = [a, b / 2.0]
- input = numpy.asarray(input)
- order = [0] * input.ndim
- order[axis] = 1
- return ndimage.gaussian_filter(input, sigma, order,
- output, mode, cval)
- tmp1 = ndimage.gaussian_gradient_magnitude(array, 1.0)
- tmp2 = ndimage.generic_gradient_magnitude(
- array, derivative, extra_arguments=(1.0,),
- extra_keywords={'b': 2.0})
- assert_array_almost_equal(tmp1, tmp2)
- def test_uniform01(self):
- array = numpy.array([2, 4, 6])
- size = 2
- output = ndimage.uniform_filter1d(array, size, origin=-1)
- assert_array_almost_equal([3, 5, 6], output)
- def test_uniform02(self):
- array = numpy.array([1, 2, 3])
- filter_shape = [0]
- output = ndimage.uniform_filter(array, filter_shape)
- assert_array_almost_equal(array, output)
- def test_uniform03(self):
- array = numpy.array([1, 2, 3])
- filter_shape = [1]
- output = ndimage.uniform_filter(array, filter_shape)
- assert_array_almost_equal(array, output)
- def test_uniform04(self):
- array = numpy.array([2, 4, 6])
- filter_shape = [2]
- output = ndimage.uniform_filter(array, filter_shape)
- assert_array_almost_equal([2, 3, 5], output)
- def test_uniform05(self):
- array = []
- filter_shape = [1]
- output = ndimage.uniform_filter(array, filter_shape)
- assert_array_almost_equal([], output)
- def test_uniform06(self):
- filter_shape = [2, 2]
- for type1 in self.types:
- array = numpy.array([[4, 8, 12],
- [16, 20, 24]], type1)
- for type2 in self.types:
- output = ndimage.uniform_filter(
- array, filter_shape, output=type2)
- assert_array_almost_equal([[4, 6, 10], [10, 12, 16]], output)
- assert_equal(output.dtype.type, type2)
- def test_minimum_filter01(self):
- array = numpy.array([1, 2, 3, 4, 5])
- filter_shape = numpy.array([2])
- output = ndimage.minimum_filter(array, filter_shape)
- assert_array_almost_equal([1, 1, 2, 3, 4], output)
- def test_minimum_filter02(self):
- array = numpy.array([1, 2, 3, 4, 5])
- filter_shape = numpy.array([3])
- output = ndimage.minimum_filter(array, filter_shape)
- assert_array_almost_equal([1, 1, 2, 3, 4], output)
- def test_minimum_filter03(self):
- array = numpy.array([3, 2, 5, 1, 4])
- filter_shape = numpy.array([2])
- output = ndimage.minimum_filter(array, filter_shape)
- assert_array_almost_equal([3, 2, 2, 1, 1], output)
- def test_minimum_filter04(self):
- array = numpy.array([3, 2, 5, 1, 4])
- filter_shape = numpy.array([3])
- output = ndimage.minimum_filter(array, filter_shape)
- assert_array_almost_equal([2, 2, 1, 1, 1], output)
- def test_minimum_filter05(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- filter_shape = numpy.array([2, 3])
- output = ndimage.minimum_filter(array, filter_shape)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 2, 1, 1, 1],
- [5, 3, 3, 1, 1]], output)
- def test_minimum_filter06(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 1, 1], [1, 1, 1]]
- output = ndimage.minimum_filter(array, footprint=footprint)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 2, 1, 1, 1],
- [5, 3, 3, 1, 1]], output)
- def test_minimum_filter07(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.minimum_filter(array, footprint=footprint)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]], output)
- def test_minimum_filter08(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.minimum_filter(array, footprint=footprint, origin=-1)
- assert_array_almost_equal([[3, 1, 3, 1, 1],
- [5, 3, 3, 1, 1],
- [3, 3, 1, 1, 1]], output)
- def test_minimum_filter09(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.minimum_filter(array, footprint=footprint,
- origin=[-1, 0])
- assert_array_almost_equal([[2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1],
- [5, 3, 3, 1, 1]], output)
- def test_maximum_filter01(self):
- array = numpy.array([1, 2, 3, 4, 5])
- filter_shape = numpy.array([2])
- output = ndimage.maximum_filter(array, filter_shape)
- assert_array_almost_equal([1, 2, 3, 4, 5], output)
- def test_maximum_filter02(self):
- array = numpy.array([1, 2, 3, 4, 5])
- filter_shape = numpy.array([3])
- output = ndimage.maximum_filter(array, filter_shape)
- assert_array_almost_equal([2, 3, 4, 5, 5], output)
- def test_maximum_filter03(self):
- array = numpy.array([3, 2, 5, 1, 4])
- filter_shape = numpy.array([2])
- output = ndimage.maximum_filter(array, filter_shape)
- assert_array_almost_equal([3, 3, 5, 5, 4], output)
- def test_maximum_filter04(self):
- array = numpy.array([3, 2, 5, 1, 4])
- filter_shape = numpy.array([3])
- output = ndimage.maximum_filter(array, filter_shape)
- assert_array_almost_equal([3, 5, 5, 5, 4], output)
- def test_maximum_filter05(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- filter_shape = numpy.array([2, 3])
- output = ndimage.maximum_filter(array, filter_shape)
- assert_array_almost_equal([[3, 5, 5, 5, 4],
- [7, 9, 9, 9, 5],
- [8, 9, 9, 9, 7]], output)
- def test_maximum_filter06(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 1, 1], [1, 1, 1]]
- output = ndimage.maximum_filter(array, footprint=footprint)
- assert_array_almost_equal([[3, 5, 5, 5, 4],
- [7, 9, 9, 9, 5],
- [8, 9, 9, 9, 7]], output)
- def test_maximum_filter07(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.maximum_filter(array, footprint=footprint)
- assert_array_almost_equal([[3, 5, 5, 5, 4],
- [7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7]], output)
- def test_maximum_filter08(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.maximum_filter(array, footprint=footprint, origin=-1)
- assert_array_almost_equal([[7, 9, 9, 5, 5],
- [9, 8, 9, 7, 5],
- [8, 8, 7, 7, 7]], output)
- def test_maximum_filter09(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.maximum_filter(array, footprint=footprint,
- origin=[-1, 0])
- assert_array_almost_equal([[7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7],
- [8, 8, 8, 7, 7]], output)
- def test_rank01(self):
- array = numpy.array([1, 2, 3, 4, 5])
- output = ndimage.rank_filter(array, 1, size=2)
- assert_array_almost_equal(array, output)
- output = ndimage.percentile_filter(array, 100, size=2)
- assert_array_almost_equal(array, output)
- output = ndimage.median_filter(array, 2)
- assert_array_almost_equal(array, output)
- def test_rank02(self):
- array = numpy.array([1, 2, 3, 4, 5])
- output = ndimage.rank_filter(array, 1, size=[3])
- assert_array_almost_equal(array, output)
- output = ndimage.percentile_filter(array, 50, size=3)
- assert_array_almost_equal(array, output)
- output = ndimage.median_filter(array, (3,))
- assert_array_almost_equal(array, output)
- def test_rank03(self):
- array = numpy.array([3, 2, 5, 1, 4])
- output = ndimage.rank_filter(array, 1, size=[2])
- assert_array_almost_equal([3, 3, 5, 5, 4], output)
- output = ndimage.percentile_filter(array, 100, size=2)
- assert_array_almost_equal([3, 3, 5, 5, 4], output)
- def test_rank04(self):
- array = numpy.array([3, 2, 5, 1, 4])
- expected = [3, 3, 2, 4, 4]
- output = ndimage.rank_filter(array, 1, size=3)
- assert_array_almost_equal(expected, output)
- output = ndimage.percentile_filter(array, 50, size=3)
- assert_array_almost_equal(expected, output)
- output = ndimage.median_filter(array, size=3)
- assert_array_almost_equal(expected, output)
- def test_rank05(self):
- array = numpy.array([3, 2, 5, 1, 4])
- expected = [3, 3, 2, 4, 4]
- output = ndimage.rank_filter(array, -2, size=3)
- assert_array_almost_equal(expected, output)
- def test_rank06(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]])
- expected = [[2, 2, 1, 1, 1],
- [3, 3, 2, 1, 1],
- [5, 5, 3, 3, 1]]
- output = ndimage.rank_filter(array, 1, size=[2, 3])
- assert_array_almost_equal(expected, output)
- output = ndimage.percentile_filter(array, 17, size=(2, 3))
- assert_array_almost_equal(expected, output)
- def test_rank07(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]])
- expected = [[3, 5, 5, 5, 4],
- [5, 5, 7, 5, 4],
- [6, 8, 8, 7, 5]]
- output = ndimage.rank_filter(array, -2, size=[2, 3])
- assert_array_almost_equal(expected, output)
- def test_rank08(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]])
- expected = [[3, 3, 2, 4, 4],
- [5, 5, 5, 4, 4],
- [5, 6, 7, 5, 5]]
- output = ndimage.percentile_filter(array, 50.0, size=(2, 3))
- assert_array_almost_equal(expected, output)
- output = ndimage.rank_filter(array, 3, size=(2, 3))
- assert_array_almost_equal(expected, output)
- output = ndimage.median_filter(array, size=(2, 3))
- assert_array_almost_equal(expected, output)
- def test_rank09(self):
- expected = [[3, 3, 2, 4, 4],
- [3, 5, 2, 5, 1],
- [5, 5, 8, 3, 5]]
- footprint = [[1, 0, 1], [0, 1, 0]]
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- output = ndimage.rank_filter(array, 1, footprint=footprint)
- assert_array_almost_equal(expected, output)
- output = ndimage.percentile_filter(array, 35, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_rank10(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- expected = [[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]]
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.rank_filter(array, 0, footprint=footprint)
- assert_array_almost_equal(expected, output)
- output = ndimage.percentile_filter(array, 0.0, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_rank11(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- expected = [[3, 5, 5, 5, 4],
- [7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7]]
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.rank_filter(array, -1, footprint=footprint)
- assert_array_almost_equal(expected, output)
- output = ndimage.percentile_filter(array, 100.0, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_rank12(self):
- expected = [[3, 3, 2, 4, 4],
- [3, 5, 2, 5, 1],
- [5, 5, 8, 3, 5]]
- footprint = [[1, 0, 1], [0, 1, 0]]
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- output = ndimage.rank_filter(array, 1, footprint=footprint)
- assert_array_almost_equal(expected, output)
- output = ndimage.percentile_filter(array, 50.0,
- footprint=footprint)
- assert_array_almost_equal(expected, output)
- output = ndimage.median_filter(array, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_rank13(self):
- expected = [[5, 2, 5, 1, 1],
- [5, 8, 3, 5, 5],
- [6, 6, 5, 5, 5]]
- footprint = [[1, 0, 1], [0, 1, 0]]
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- output = ndimage.rank_filter(array, 1, footprint=footprint,
- origin=-1)
- assert_array_almost_equal(expected, output)
- def test_rank14(self):
- expected = [[3, 5, 2, 5, 1],
- [5, 5, 8, 3, 5],
- [5, 6, 6, 5, 5]]
- footprint = [[1, 0, 1], [0, 1, 0]]
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- output = ndimage.rank_filter(array, 1, footprint=footprint,
- origin=[-1, 0])
- assert_array_almost_equal(expected, output)
- def test_rank15(self):
- "rank filter 15"
- expected = [[2, 3, 1, 4, 1],
- [5, 3, 7, 1, 1],
- [5, 5, 3, 3, 3]]
- footprint = [[1, 0, 1], [0, 1, 0]]
- for type_ in self.types:
- array = numpy.array([[3, 2, 5, 1, 4],
- [5, 8, 3, 7, 1],
- [5, 6, 9, 3, 5]], type_)
- output = ndimage.rank_filter(array, 0, footprint=footprint,
- origin=[-1, 0])
- assert_array_almost_equal(expected, output)
- def test_generic_filter1d01(self):
- weights = numpy.array([1.1, 2.2, 3.3])
- def _filter_func(input, output, fltr, total):
- fltr = fltr / total
- for ii in range(input.shape[0] - 2):
- output[ii] = input[ii] * fltr[0]
- output[ii] += input[ii + 1] * fltr[1]
- output[ii] += input[ii + 2] * fltr[2]
- for type_ in self.types:
- a = numpy.arange(12, dtype=type_)
- a.shape = (3, 4)
- r1 = ndimage.correlate1d(a, weights / weights.sum(), 0, origin=-1)
- r2 = ndimage.generic_filter1d(
- a, _filter_func, 3, axis=0, origin=-1,
- extra_arguments=(weights,),
- extra_keywords={'total': weights.sum()})
- assert_array_almost_equal(r1, r2)
- def test_generic_filter01(self):
- filter_ = numpy.array([[1.0, 2.0], [3.0, 4.0]])
- footprint = numpy.array([[1, 0], [0, 1]])
- cf = numpy.array([1., 4.])
- def _filter_func(buffer, weights, total=1.0):
- weights = cf / total
- return (buffer * weights).sum()
- for type_ in self.types:
- a = numpy.arange(12, dtype=type_)
- a.shape = (3, 4)
- r1 = ndimage.correlate(a, filter_ * footprint)
- if type_ in self.float_types:
- r1 /= 5
- else:
- r1 //= 5
- r2 = ndimage.generic_filter(
- a, _filter_func, footprint=footprint, extra_arguments=(cf,),
- extra_keywords={'total': cf.sum()})
- assert_array_almost_equal(r1, r2)
- def test_extend01(self):
- array = numpy.array([1, 2, 3])
- weights = numpy.array([1, 0])
- expected_values = [[1, 1, 2],
- [3, 1, 2],
- [1, 1, 2],
- [2, 1, 2],
- [0, 1, 2]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate1d(array, weights, 0,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend02(self):
- array = numpy.array([1, 2, 3])
- weights = numpy.array([1, 0, 0, 0, 0, 0, 0, 0])
- expected_values = [[1, 1, 1],
- [3, 1, 2],
- [3, 3, 2],
- [1, 2, 3],
- [0, 0, 0]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate1d(array, weights, 0,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend03(self):
- array = numpy.array([1, 2, 3])
- weights = numpy.array([0, 0, 1])
- expected_values = [[2, 3, 3],
- [2, 3, 1],
- [2, 3, 3],
- [2, 3, 2],
- [2, 3, 0]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate1d(array, weights, 0,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend04(self):
- array = numpy.array([1, 2, 3])
- weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
- expected_values = [[3, 3, 3],
- [2, 3, 1],
- [2, 1, 1],
- [1, 2, 3],
- [0, 0, 0]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate1d(array, weights, 0,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend05(self):
- array = numpy.array([[1, 2, 3],
- [4, 5, 6],
- [7, 8, 9]])
- weights = numpy.array([[1, 0], [0, 0]])
- expected_values = [[[1, 1, 2], [1, 1, 2], [4, 4, 5]],
- [[9, 7, 8], [3, 1, 2], [6, 4, 5]],
- [[1, 1, 2], [1, 1, 2], [4, 4, 5]],
- [[5, 4, 5], [2, 1, 2], [5, 4, 5]],
- [[0, 0, 0], [0, 1, 2], [0, 4, 5]]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate(array, weights,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend06(self):
- array = numpy.array([[1, 2, 3],
- [4, 5, 6],
- [7, 8, 9]])
- weights = numpy.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])
- expected_values = [[[5, 6, 6], [8, 9, 9], [8, 9, 9]],
- [[5, 6, 4], [8, 9, 7], [2, 3, 1]],
- [[5, 6, 6], [8, 9, 9], [8, 9, 9]],
- [[5, 6, 5], [8, 9, 8], [5, 6, 5]],
- [[5, 6, 0], [8, 9, 0], [0, 0, 0]]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate(array, weights,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend07(self):
- array = numpy.array([1, 2, 3])
- weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
- expected_values = [[3, 3, 3],
- [2, 3, 1],
- [2, 1, 1],
- [1, 2, 3],
- [0, 0, 0]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate(array, weights, mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend08(self):
- array = numpy.array([[1], [2], [3]])
- weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
- expected_values = [[[3], [3], [3]],
- [[2], [3], [1]],
- [[2], [1], [1]],
- [[1], [2], [3]],
- [[0], [0], [0]]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate(array, weights, mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend09(self):
- array = numpy.array([1, 2, 3])
- weights = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 1])
- expected_values = [[3, 3, 3],
- [2, 3, 1],
- [2, 1, 1],
- [1, 2, 3],
- [0, 0, 0]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate(array, weights,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_extend10(self):
- array = numpy.array([[1], [2], [3]])
- weights = numpy.array([[0], [0], [0], [0], [0], [0], [0], [0], [1]])
- expected_values = [[[3], [3], [3]],
- [[2], [3], [1]],
- [[2], [1], [1]],
- [[1], [2], [3]],
- [[0], [0], [0]]]
- for mode, expected_value in zip(self.modes, expected_values):
- output = ndimage.correlate(array, weights,
- mode=mode, cval=0)
- assert_array_equal(output, expected_value)
- def test_boundaries(self):
- def shift(x):
- return (x[0] + 0.5,)
- data = numpy.array([1, 2, 3, 4.])
- expected = {'constant': [1.5, 2.5, 3.5, -1, -1, -1, -1],
- 'wrap': [1.5, 2.5, 3.5, 1.5, 2.5, 3.5, 1.5],
- 'mirror': [1.5, 2.5, 3.5, 3.5, 2.5, 1.5, 1.5],
- 'nearest': [1.5, 2.5, 3.5, 4, 4, 4, 4]}
- for mode in expected:
- assert_array_equal(
- expected[mode],
- ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
- output_shape=(7,), order=1))
- def test_boundaries2(self):
- def shift(x):
- return (x[0] - 0.9,)
- data = numpy.array([1, 2, 3, 4])
- expected = {'constant': [-1, 1, 2, 3],
- 'wrap': [3, 1, 2, 3],
- 'mirror': [2, 1, 2, 3],
- 'nearest': [1, 1, 2, 3]}
- for mode in expected:
- assert_array_equal(
- expected[mode],
- ndimage.geometric_transform(data, shift, cval=-1, mode=mode,
- output_shape=(4,)))
- def test_fourier_gaussian_real01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.float32, numpy.float64], [6, 14]):
- a = numpy.zeros(shape, type_)
- a[0, 0] = 1.0
- a = fft.rfft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a), 1, decimal=dec)
- def test_fourier_gaussian_complex01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.complex64, numpy.complex128], [6, 14]):
- a = numpy.zeros(shape, type_)
- a[0, 0] = 1.0
- a = fft.fft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
- def test_fourier_uniform_real01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.float32, numpy.float64], [6, 14]):
- a = numpy.zeros(shape, type_)
- a[0, 0] = 1.0
- a = fft.rfft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
- def test_fourier_uniform_complex01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.complex64, numpy.complex128], [6, 14]):
- a = numpy.zeros(shape, type_)
- a[0, 0] = 1.0
- a = fft.fft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
- def test_fourier_shift_real01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.float32, numpy.float64], [4, 11]):
- expected = numpy.arange(shape[0] * shape[1], dtype=type_)
- expected.shape = shape
- a = fft.rfft(expected, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_shift(a, [1, 1], shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1],
- decimal=dec)
- assert_array_almost_equal(a.imag, numpy.zeros(shape),
- decimal=dec)
- def test_fourier_shift_complex01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.complex64, numpy.complex128], [4, 11]):
- expected = numpy.arange(shape[0] * shape[1], dtype=type_)
- expected.shape = shape
- a = fft.fft(expected, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_shift(a, [1, 1], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_array_almost_equal(a.real[1:, 1:], expected[:-1, :-1],
- decimal=dec)
- assert_array_almost_equal(a.imag, numpy.zeros(shape),
- decimal=dec)
- def test_fourier_ellipsoid_real01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.float32, numpy.float64], [5, 14]):
- a = numpy.zeros(shape, type_)
- a[0, 0] = 1.0
- a = fft.rfft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_ellipsoid(a, [5.0, 2.5],
- shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
- def test_fourier_ellipsoid_complex01(self):
- for shape in [(32, 16), (31, 15)]:
- for type_, dec in zip([numpy.complex64, numpy.complex128],
- [5, 14]):
- a = numpy.zeros(shape, type_)
- a[0, 0] = 1.0
- a = fft.fft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
- def test_spline01(self):
- for type_ in self.types:
- data = numpy.ones([], type_)
- for order in range(2, 6):
- out = ndimage.spline_filter(data, order=order)
- assert_array_almost_equal(out, 1)
- def test_spline02(self):
- for type_ in self.types:
- data = numpy.array([1], type_)
- for order in range(2, 6):
- out = ndimage.spline_filter(data, order=order)
- assert_array_almost_equal(out, [1])
- def test_spline03(self):
- for type_ in self.types:
- data = numpy.ones([], type_)
- for order in range(2, 6):
- out = ndimage.spline_filter(data, order,
- output=type_)
- assert_array_almost_equal(out, 1)
- def test_spline04(self):
- for type_ in self.types:
- data = numpy.ones([4], type_)
- for order in range(2, 6):
- out = ndimage.spline_filter(data, order)
- assert_array_almost_equal(out, [1, 1, 1, 1])
- def test_spline05(self):
- for type_ in self.types:
- data = numpy.ones([4, 4], type_)
- for order in range(2, 6):
- out = ndimage.spline_filter(data, order=order)
- assert_array_almost_equal(out, [[1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1]])
- def test_geometric_transform01(self):
- data = numpy.array([1])
- def mapping(x):
- return x
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [1])
- def test_geometric_transform02(self):
- data = numpy.ones([4])
- def mapping(x):
- return x
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [1, 1, 1, 1])
- def test_geometric_transform03(self):
- data = numpy.ones([4])
- def mapping(x):
- return (x[0] - 1,)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [0, 1, 1, 1])
- def test_geometric_transform04(self):
- data = numpy.array([4, 1, 3, 2])
- def mapping(x):
- return (x[0] - 1,)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [0, 4, 1, 3])
- def test_geometric_transform05(self):
- data = numpy.array([[1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1]])
- def mapping(x):
- return (x[0], x[1] - 1)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [[0, 1, 1, 1],
- [0, 1, 1, 1],
- [0, 1, 1, 1]])
- def test_geometric_transform06(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- def mapping(x):
- return (x[0], x[1] - 1)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [[0, 4, 1, 3],
- [0, 7, 6, 8],
- [0, 3, 5, 3]])
- def test_geometric_transform07(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- def mapping(x):
- return (x[0] - 1, x[1])
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [4, 1, 3, 2],
- [7, 6, 8, 5]])
- def test_geometric_transform08(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- def mapping(x):
- return (x[0] - 1, x[1] - 1)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, data.shape,
- order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_geometric_transform10(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- def mapping(x):
- return (x[0] - 1, x[1] - 1)
- for order in range(0, 6):
- if (order > 1):
- filtered = ndimage.spline_filter(data, order=order)
- else:
- filtered = data
- out = ndimage.geometric_transform(filtered, mapping, data.shape,
- order=order, prefilter=False)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_geometric_transform13(self):
- data = numpy.ones([2], numpy.float64)
- def mapping(x):
- return (x[0] // 2,)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, [4], order=order)
- assert_array_almost_equal(out, [1, 1, 1, 1])
- def test_geometric_transform14(self):
- data = [1, 5, 2, 6, 3, 7, 4, 4]
- def mapping(x):
- return (2 * x[0],)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, [4], order=order)
- assert_array_almost_equal(out, [1, 2, 3, 4])
- def test_geometric_transform15(self):
- data = [1, 2, 3, 4]
- def mapping(x):
- return (x[0] / 2,)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, [8], order=order)
- assert_array_almost_equal(out[::2], [1, 2, 3, 4])
- def test_geometric_transform16(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9.0, 10, 11, 12]]
- def mapping(x):
- return (x[0], x[1] * 2)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (3, 2),
- order=order)
- assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
- def test_geometric_transform17(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x):
- return (x[0] * 2, x[1])
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (1, 4),
- order=order)
- assert_array_almost_equal(out, [[1, 2, 3, 4]])
- def test_geometric_transform18(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x):
- return (x[0] * 2, x[1] * 2)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (1, 2),
- order=order)
- assert_array_almost_equal(out, [[1, 3]])
- def test_geometric_transform19(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x):
- return (x[0], x[1] / 2)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (3, 8),
- order=order)
- assert_array_almost_equal(out[..., ::2], data)
- def test_geometric_transform20(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x):
- return (x[0] / 2, x[1])
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (6, 4),
- order=order)
- assert_array_almost_equal(out[::2, ...], data)
- def test_geometric_transform21(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x):
- return (x[0] / 2, x[1] / 2)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (6, 8),
- order=order)
- assert_array_almost_equal(out[::2, ::2], data)
- def test_geometric_transform22(self):
- data = numpy.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]], numpy.float64)
- def mapping1(x):
- return (x[0] / 2, x[1] / 2)
- def mapping2(x):
- return (x[0] * 2, x[1] * 2)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping1,
- (6, 8), order=order)
- out = ndimage.geometric_transform(out, mapping2,
- (3, 4), order=order)
- assert_array_almost_equal(out, data)
- def test_geometric_transform23(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x):
- return (1, x[0] * 2)
- for order in range(0, 6):
- out = ndimage.geometric_transform(data, mapping, (2,), order=order)
- out = out.astype(numpy.int32)
- assert_array_almost_equal(out, [5, 7])
- def test_geometric_transform24(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- def mapping(x, a, b):
- return (a, x[0] * b)
- for order in range(0, 6):
- out = ndimage.geometric_transform(
- data, mapping, (2,), order=order, extra_arguments=(1,),
- extra_keywords={'b': 2})
- assert_array_almost_equal(out, [5, 7])
- def test_geometric_transform_endianness_with_output_parameter(self):
- # geometric transform given output ndarray or dtype with
- # non-native endianness. see issue #4127
- data = numpy.array([1])
- def mapping(x):
- return x
- for out in [data.dtype, data.dtype.newbyteorder(),
- numpy.empty_like(data),
- numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
- returned = ndimage.geometric_transform(data, mapping, data.shape,
- output=out)
- result = out if returned is None else returned
- assert_array_almost_equal(result, [1])
- def test_geometric_transform_with_string_output(self):
- data = numpy.array([1])
- def mapping(x):
- return x
- out = ndimage.geometric_transform(data, mapping, output='f')
- assert_(out.dtype is numpy.dtype('f'))
- assert_array_almost_equal(out, [1])
- def test_map_coordinates01(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- idx = numpy.indices(data.shape)
- idx -= 1
- for order in range(0, 6):
- out = ndimage.map_coordinates(data, idx, order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_map_coordinates02(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- idx = numpy.indices(data.shape, numpy.float64)
- idx -= 0.5
- for order in range(0, 6):
- out1 = ndimage.shift(data, 0.5, order=order)
- out2 = ndimage.map_coordinates(data, idx, order=order)
- assert_array_almost_equal(out1, out2)
- def test_map_coordinates03(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]], order='F')
- idx = numpy.indices(data.shape) - 1
- out = ndimage.map_coordinates(data, idx)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- assert_array_almost_equal(out, ndimage.shift(data, (1, 1)))
- idx = numpy.indices(data[::2].shape) - 1
- out = ndimage.map_coordinates(data[::2], idx)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3]])
- assert_array_almost_equal(out, ndimage.shift(data[::2], (1, 1)))
- idx = numpy.indices(data[:, ::2].shape) - 1
- out = ndimage.map_coordinates(data[:, ::2], idx)
- assert_array_almost_equal(out, [[0, 0], [0, 4], [0, 7]])
- assert_array_almost_equal(out, ndimage.shift(data[:, ::2], (1, 1)))
- def test_map_coordinates_endianness_with_output_parameter(self):
- # output parameter given as array or dtype with either endianness
- # see issue #4127
- data = numpy.array([[1, 2], [7, 6]])
- expected = numpy.array([[0, 0], [0, 1]])
- idx = numpy.indices(data.shape)
- idx -= 1
- for out in [data.dtype, data.dtype.newbyteorder(), numpy.empty_like(expected),
- numpy.empty_like(expected).astype(expected.dtype.newbyteorder())]:
- returned = ndimage.map_coordinates(data, idx, output=out)
- result = out if returned is None else returned
- assert_array_almost_equal(result, expected)
- def test_map_coordinates_with_string_output(self):
- data = numpy.array([[1]])
- idx = numpy.indices(data.shape)
- out = ndimage.map_coordinates(data, idx, output='f')
- assert_(out.dtype is numpy.dtype('f'))
- assert_array_almost_equal(out, [[1]])
- @pytest.mark.skipif('win32' in sys.platform or numpy.intp(0).itemsize < 8,
- reason="do not run on 32 bit or windows (no sparse memory)")
- def test_map_coordinates_large_data(self):
- # check crash on large data
- try:
- n = 30000
- a = numpy.empty(n**2, dtype=numpy.float32).reshape(n, n)
- # fill the part we might read
- a[n-3:, n-3:] = 0
- ndimage.map_coordinates(a, [[n - 1.5], [n - 1.5]], order=1)
- except MemoryError:
- raise pytest.skip("Not enough memory available")
- def test_affine_transform01(self):
- data = numpy.array([1])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1]], order=order)
- assert_array_almost_equal(out, [1])
- def test_affine_transform02(self):
- data = numpy.ones([4])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1]], order=order)
- assert_array_almost_equal(out, [1, 1, 1, 1])
- def test_affine_transform03(self):
- data = numpy.ones([4])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1]], -1, order=order)
- assert_array_almost_equal(out, [0, 1, 1, 1])
- def test_affine_transform04(self):
- data = numpy.array([4, 1, 3, 2])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1]], -1, order=order)
- assert_array_almost_equal(out, [0, 4, 1, 3])
- def test_affine_transform05(self):
- data = numpy.array([[1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1]])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
- [0, -1], order=order)
- assert_array_almost_equal(out, [[0, 1, 1, 1],
- [0, 1, 1, 1],
- [0, 1, 1, 1]])
- def test_affine_transform06(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
- [0, -1], order=order)
- assert_array_almost_equal(out, [[0, 4, 1, 3],
- [0, 7, 6, 8],
- [0, 3, 5, 3]])
- def test_affine_transform07(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
- [-1, 0], order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [4, 1, 3, 2],
- [7, 6, 8, 5]])
- def test_affine_transform08(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1, 0], [0, 1]],
- [-1, -1], order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_affine_transform09(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- if (order > 1):
- filtered = ndimage.spline_filter(data, order=order)
- else:
- filtered = data
- out = ndimage.affine_transform(filtered, [[1, 0], [0, 1]],
- [-1, -1], order=order,
- prefilter=False)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_affine_transform10(self):
- data = numpy.ones([2], numpy.float64)
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0.5]], output_shape=(4,),
- order=order)
- assert_array_almost_equal(out, [1, 1, 1, 0])
- def test_affine_transform11(self):
- data = [1, 5, 2, 6, 3, 7, 4, 4]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[2]], 0, (4,), order=order)
- assert_array_almost_equal(out, [1, 2, 3, 4])
- def test_affine_transform12(self):
- data = [1, 2, 3, 4]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0.5]], 0, (8,), order=order)
- assert_array_almost_equal(out[::2], [1, 2, 3, 4])
- def test_affine_transform13(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9.0, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1, 0], [0, 2]], 0, (3, 2),
- order=order)
- assert_array_almost_equal(out, [[1, 3], [5, 7], [9, 11]])
- def test_affine_transform14(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[2, 0], [0, 1]], 0, (1, 4),
- order=order)
- assert_array_almost_equal(out, [[1, 2, 3, 4]])
- def test_affine_transform15(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[2, 0], [0, 2]], 0, (1, 2),
- order=order)
- assert_array_almost_equal(out, [[1, 3]])
- def test_affine_transform16(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[1, 0.0], [0, 0.5]], 0,
- (3, 8), order=order)
- assert_array_almost_equal(out[..., ::2], data)
- def test_affine_transform17(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0.5, 0], [0, 1]], 0,
- (6, 4), order=order)
- assert_array_almost_equal(out[::2, ...], data)
- def test_affine_transform18(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
- (6, 8), order=order)
- assert_array_almost_equal(out[::2, ::2], data)
- def test_affine_transform19(self):
- data = numpy.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]], numpy.float64)
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0.5, 0], [0, 0.5]], 0,
- (6, 8), order=order)
- out = ndimage.affine_transform(out, [[2.0, 0], [0, 2.0]], 0,
- (3, 4), order=order)
- assert_array_almost_equal(out, data)
- def test_affine_transform20(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0], [2]], 0, (2,),
- order=order)
- assert_array_almost_equal(out, [1, 3])
- def test_affine_transform21(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[2], [0]], 0, (2,),
- order=order)
- assert_array_almost_equal(out, [1, 9])
- def test_affine_transform22(self):
- # shift and offset interaction; see issue #1547
- data = numpy.array([4, 1, 3, 2])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[2]], [-1], (3,),
- order=order)
- assert_array_almost_equal(out, [0, 1, 2])
- def test_affine_transform23(self):
- # shift and offset interaction; see issue #1547
- data = numpy.array([4, 1, 3, 2])
- for order in range(0, 6):
- out = ndimage.affine_transform(data, [[0.5]], [-1], (8,),
- order=order)
- assert_array_almost_equal(out[::2], [0, 4, 1, 3])
- def test_affine_transform24(self):
- # consistency between diagonal and non-diagonal case; see issue #1547
- data = numpy.array([4, 1, 3, 2])
- for order in range(0, 6):
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "The behaviour of affine_transform with a one-dimensional array .* has changed")
- out1 = ndimage.affine_transform(data, [2], -1, order=order)
- out2 = ndimage.affine_transform(data, [[2]], -1, order=order)
- assert_array_almost_equal(out1, out2)
- def test_affine_transform25(self):
- # consistency between diagonal and non-diagonal case; see issue #1547
- data = numpy.array([4, 1, 3, 2])
- for order in range(0, 6):
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "The behaviour of affine_transform with a one-dimensional array .* has changed")
- out1 = ndimage.affine_transform(data, [0.5], -1, order=order)
- out2 = ndimage.affine_transform(data, [[0.5]], -1, order=order)
- assert_array_almost_equal(out1, out2)
- def test_affine_transform26(self):
- # test homogeneous coordinates
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- if (order > 1):
- filtered = ndimage.spline_filter(data, order=order)
- else:
- filtered = data
- tform_original = numpy.eye(2)
- offset_original = -numpy.ones((2, 1))
- tform_h1 = numpy.hstack((tform_original, offset_original))
- tform_h2 = numpy.vstack((tform_h1, [[0, 0, 1]]))
- out1 = ndimage.affine_transform(filtered, tform_original,
- offset_original.ravel(),
- order=order, prefilter=False)
- out2 = ndimage.affine_transform(filtered, tform_h1, order=order,
- prefilter=False)
- out3 = ndimage.affine_transform(filtered, tform_h2, order=order,
- prefilter=False)
- for out in [out1, out2, out3]:
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_affine_transform27(self):
- # test valid homogeneous transformation matrix
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- tform_h1 = numpy.hstack((numpy.eye(2), -numpy.ones((2, 1))))
- tform_h2 = numpy.vstack((tform_h1, [[5, 2, 1]]))
- assert_raises(ValueError, ndimage.affine_transform, data, tform_h2)
- def test_affine_transform_1d_endianness_with_output_parameter(self):
- # 1d affine transform given output ndarray or dtype with
- # either endianness. see issue #7388
- data = numpy.ones((2, 2))
- for out in [numpy.empty_like(data),
- numpy.empty_like(data).astype(data.dtype.newbyteorder()),
- data.dtype, data.dtype.newbyteorder()]:
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "The behaviour of affine_transform with a one-dimensional array .* has changed")
- returned = ndimage.affine_transform(data, [1, 1], output=out)
- result = out if returned is None else returned
- assert_array_almost_equal(result, [[1, 1], [1, 1]])
- def test_affine_transform_multi_d_endianness_with_output_parameter(self):
- # affine transform given output ndarray or dtype with either endianness
- # see issue #4127
- data = numpy.array([1])
- for out in [data.dtype, data.dtype.newbyteorder(),
- numpy.empty_like(data),
- numpy.empty_like(data).astype(data.dtype.newbyteorder())]:
- returned = ndimage.affine_transform(data, [[1]], output=out)
- result = out if returned is None else returned
- assert_array_almost_equal(result, [1])
- def test_affine_transform_with_string_output(self):
- data = numpy.array([1])
- out = ndimage.affine_transform(data, [[1]], output='f')
- assert_(out.dtype is numpy.dtype('f'))
- assert_array_almost_equal(out, [1])
- def test_shift01(self):
- data = numpy.array([1])
- for order in range(0, 6):
- out = ndimage.shift(data, [1], order=order)
- assert_array_almost_equal(out, [0])
- def test_shift02(self):
- data = numpy.ones([4])
- for order in range(0, 6):
- out = ndimage.shift(data, [1], order=order)
- assert_array_almost_equal(out, [0, 1, 1, 1])
- def test_shift03(self):
- data = numpy.ones([4])
- for order in range(0, 6):
- out = ndimage.shift(data, -1, order=order)
- assert_array_almost_equal(out, [1, 1, 1, 0])
- def test_shift04(self):
- data = numpy.array([4, 1, 3, 2])
- for order in range(0, 6):
- out = ndimage.shift(data, 1, order=order)
- assert_array_almost_equal(out, [0, 4, 1, 3])
- def test_shift05(self):
- data = numpy.array([[1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1]])
- for order in range(0, 6):
- out = ndimage.shift(data, [0, 1], order=order)
- assert_array_almost_equal(out, [[0, 1, 1, 1],
- [0, 1, 1, 1],
- [0, 1, 1, 1]])
- def test_shift06(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- out = ndimage.shift(data, [0, 1], order=order)
- assert_array_almost_equal(out, [[0, 4, 1, 3],
- [0, 7, 6, 8],
- [0, 3, 5, 3]])
- def test_shift07(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- out = ndimage.shift(data, [1, 0], order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [4, 1, 3, 2],
- [7, 6, 8, 5]])
- def test_shift08(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- out = ndimage.shift(data, [1, 1], order=order)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_shift09(self):
- data = numpy.array([[4, 1, 3, 2],
- [7, 6, 8, 5],
- [3, 5, 3, 6]])
- for order in range(0, 6):
- if (order > 1):
- filtered = ndimage.spline_filter(data, order=order)
- else:
- filtered = data
- out = ndimage.shift(filtered, [1, 1], order=order, prefilter=False)
- assert_array_almost_equal(out, [[0, 0, 0, 0],
- [0, 4, 1, 3],
- [0, 7, 6, 8]])
- def test_zoom1(self):
- for order in range(0, 6):
- for z in [2, [2, 2]]:
- arr = numpy.array(list(range(25))).reshape((5, 5)).astype(float)
- arr = ndimage.zoom(arr, z, order=order)
- assert_equal(arr.shape, (10, 10))
- assert_(numpy.all(arr[-1, :] != 0))
- assert_(numpy.all(arr[-1, :] >= (20 - eps)))
- assert_(numpy.all(arr[0, :] <= (5 + eps)))
- assert_(numpy.all(arr >= (0 - eps)))
- assert_(numpy.all(arr <= (24 + eps)))
- def test_zoom2(self):
- arr = numpy.arange(12).reshape((3, 4))
- out = ndimage.zoom(ndimage.zoom(arr, 2), 0.5)
- assert_array_equal(out, arr)
- def test_zoom3(self):
- arr = numpy.array([[1, 2]])
- out1 = ndimage.zoom(arr, (2, 1))
- out2 = ndimage.zoom(arr, (1, 2))
- assert_array_almost_equal(out1, numpy.array([[1, 2], [1, 2]]))
- assert_array_almost_equal(out2, numpy.array([[1, 1, 2, 2]]))
- def test_zoom_affine01(self):
- data = [[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12]]
- for order in range(0, 6):
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "The behaviour of affine_transform with a one-dimensional array .* has changed")
- out = ndimage.affine_transform(data, [0.5, 0.5], 0,
- (6, 8), order=order)
- assert_array_almost_equal(out[::2, ::2], data)
- def test_zoom_infinity(self):
- # Ticket #1419 regression test
- dim = 8
- ndimage.zoom(numpy.zeros((dim, dim)), 1./dim, mode='nearest')
- def test_zoom_zoomfactor_one(self):
- # Ticket #1122 regression test
- arr = numpy.zeros((1, 5, 5))
- zoom = (1.0, 2.0, 2.0)
- out = ndimage.zoom(arr, zoom, cval=7)
- ref = numpy.zeros((1, 10, 10))
- assert_array_almost_equal(out, ref)
- def test_zoom_output_shape_roundoff(self):
- arr = numpy.zeros((3, 11, 25))
- zoom = (4.0 / 3, 15.0 / 11, 29.0 / 25)
- with suppress_warnings() as sup:
- sup.filter(UserWarning,
- "From scipy 0.13.0, the output shape of zoom.. is calculated with round.. instead of int")
- out = ndimage.zoom(arr, zoom)
- assert_array_equal(out.shape, (4, 15, 29))
- def test_rotate01(self):
- data = numpy.array([[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 0, 0, 0]], dtype=numpy.float64)
- for order in range(0, 6):
- out = ndimage.rotate(data, 0)
- assert_array_almost_equal(out, data)
- def test_rotate02(self):
- data = numpy.array([[0, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 0, 0]], dtype=numpy.float64)
- expected = numpy.array([[0, 0, 0],
- [0, 0, 0],
- [0, 1, 0],
- [0, 0, 0]], dtype=numpy.float64)
- for order in range(0, 6):
- out = ndimage.rotate(data, 90)
- assert_array_almost_equal(out, expected)
- def test_rotate03(self):
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0]], dtype=numpy.float64)
- expected = numpy.array([[0, 0, 0],
- [0, 0, 0],
- [0, 1, 0],
- [0, 1, 0],
- [0, 0, 0]], dtype=numpy.float64)
- for order in range(0, 6):
- out = ndimage.rotate(data, 90)
- assert_array_almost_equal(out, expected)
- def test_rotate04(self):
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0]], dtype=numpy.float64)
- expected = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0]], dtype=numpy.float64)
- for order in range(0, 6):
- out = ndimage.rotate(data, 90, reshape=False)
- assert_array_almost_equal(out, expected)
- def test_rotate05(self):
- data = numpy.empty((4, 3, 3))
- for i in range(3):
- data[:, :, i] = numpy.array([[0, 0, 0],
- [0, 1, 0],
- [0, 1, 0],
- [0, 0, 0]], dtype=numpy.float64)
- expected = numpy.array([[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 0, 0, 0]], dtype=numpy.float64)
- for order in range(0, 6):
- out = ndimage.rotate(data, 90)
- for i in range(3):
- assert_array_almost_equal(out[:, :, i], expected)
- def test_rotate06(self):
- data = numpy.empty((3, 4, 3))
- for i in range(3):
- data[:, :, i] = numpy.array([[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 0, 0, 0]], dtype=numpy.float64)
- expected = numpy.array([[0, 0, 0],
- [0, 1, 0],
- [0, 1, 0],
- [0, 0, 0]], dtype=numpy.float64)
- for order in range(0, 6):
- out = ndimage.rotate(data, 90)
- for i in range(3):
- assert_array_almost_equal(out[:, :, i], expected)
- def test_rotate07(self):
- data = numpy.array([[[0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
- data = data.transpose()
- expected = numpy.array([[[0, 0, 0],
- [0, 1, 0],
- [0, 1, 0],
- [0, 0, 0],
- [0, 0, 0]]] * 2, dtype=numpy.float64)
- expected = expected.transpose([2, 1, 0])
- for order in range(0, 6):
- out = ndimage.rotate(data, 90, axes=(0, 1))
- assert_array_almost_equal(out, expected)
- def test_rotate08(self):
- data = numpy.array([[[0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
- data = data.transpose()
- expected = numpy.array([[[0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]]] * 2, dtype=numpy.float64)
- expected = expected.transpose()
- for order in range(0, 6):
- out = ndimage.rotate(data, 90, axes=(0, 1), reshape=False)
- assert_array_almost_equal(out, expected)
- def test_watershed_ift01(self):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[-1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.int8)
- out = ndimage.watershed_ift(data, markers, structure=[[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- expected = [[-1, -1, -1, -1, -1, -1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, -1, -1, -1, -1, -1, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_watershed_ift02(self):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[-1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.int8)
- out = ndimage.watershed_ift(data, markers)
- expected = [[-1, -1, -1, -1, -1, -1, -1],
- [-1, -1, 1, 1, 1, -1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, -1, 1, 1, 1, -1, -1],
- [-1, -1, -1, -1, -1, -1, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_watershed_ift03(self):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 2, 0, 3, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, -1]], numpy.int8)
- out = ndimage.watershed_ift(data, markers)
- expected = [[-1, -1, -1, -1, -1, -1, -1],
- [-1, -1, 2, -1, 3, -1, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, -1, 2, -1, 3, -1, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_watershed_ift04(self):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 2, 0, 3, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, -1]],
- numpy.int8)
- out = ndimage.watershed_ift(data, markers,
- structure=[[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- expected = [[-1, -1, -1, -1, -1, -1, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, 2, 2, 3, 3, 3, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_watershed_ift05(self):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 0, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 3, 0, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, -1]],
- numpy.int8)
- out = ndimage.watershed_ift(data, markers,
- structure=[[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- expected = [[-1, -1, -1, -1, -1, -1, -1],
- [-1, 3, 3, 2, 2, 2, -1],
- [-1, 3, 3, 2, 2, 2, -1],
- [-1, 3, 3, 2, 2, 2, -1],
- [-1, 3, 3, 2, 2, 2, -1],
- [-1, 3, 3, 2, 2, 2, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_watershed_ift06(self):
- data = numpy.array([[0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[-1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.int8)
- out = ndimage.watershed_ift(data, markers,
- structure=[[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- expected = [[-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, -1, -1, -1, -1, -1, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_watershed_ift07(self):
- shape = (7, 6)
- data = numpy.zeros(shape, dtype=numpy.uint8)
- data = data.transpose()
- data[...] = numpy.array([[0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.uint8)
- markers = numpy.array([[-1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], numpy.int8)
- out = numpy.zeros(shape, dtype=numpy.int16)
- out = out.transpose()
- ndimage.watershed_ift(data, markers,
- structure=[[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]],
- output=out)
- expected = [[-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, 1, 1, 1, 1, 1, -1],
- [-1, -1, -1, -1, -1, -1, -1],
- [-1, -1, -1, -1, -1, -1, -1]]
- assert_array_almost_equal(out, expected)
- def test_distance_transform_bf01(self):
- # brute force (bf) distance transform
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_bf(data, 'euclidean',
- return_indices=True)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 2, 4, 2, 1, 0, 0],
- [0, 0, 1, 4, 8, 4, 1, 0, 0],
- [0, 0, 1, 2, 4, 2, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out * out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 3, 2, 1, 2, 3, 3, 3],
- [4, 4, 4, 4, 6, 4, 4, 4, 4],
- [5, 5, 6, 6, 7, 6, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 1, 2, 4, 6, 7, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_bf02(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_bf(data, 'cityblock',
- return_indices=True)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 2, 2, 2, 1, 0, 0],
- [0, 0, 1, 2, 3, 2, 1, 0, 0],
- [0, 0, 1, 2, 2, 2, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 3, 3, 1, 3, 3, 3, 3],
- [4, 4, 4, 4, 7, 4, 4, 4, 4],
- [5, 5, 6, 7, 7, 7, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 1, 1, 4, 7, 7, 7, 8],
- [0, 1, 1, 1, 4, 7, 7, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(expected, ft)
- def test_distance_transform_bf03(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_bf(data, 'chessboard',
- return_indices=True)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 2, 1, 1, 0, 0],
- [0, 0, 1, 2, 2, 2, 1, 0, 0],
- [0, 0, 1, 1, 2, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 4, 2, 2, 2, 4, 3, 3],
- [4, 4, 5, 6, 6, 6, 5, 4, 4],
- [5, 5, 6, 6, 7, 6, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 5, 6, 6, 7, 8],
- [0, 1, 1, 2, 6, 6, 7, 7, 8],
- [0, 1, 1, 2, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 6, 6, 7, 7, 8],
- [0, 1, 2, 4, 5, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_bf04(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- tdt, tft = ndimage.distance_transform_bf(data, return_indices=1)
- dts = []
- fts = []
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ndimage.distance_transform_bf(data, distances=dt)
- dts.append(dt)
- ft = ndimage.distance_transform_bf(
- data, return_distances=False, return_indices=1)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_bf(
- data, return_distances=False, return_indices=True, indices=ft)
- fts.append(ft)
- dt, ft = ndimage.distance_transform_bf(
- data, return_indices=1)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = ndimage.distance_transform_bf(
- data, distances=dt, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- dt = ndimage.distance_transform_bf(
- data, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_bf(
- data, distances=dt, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- for dt in dts:
- assert_array_almost_equal(tdt, dt)
- for ft in fts:
- assert_array_almost_equal(tft, ft)
- def test_distance_transform_bf05(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_bf(
- data, 'euclidean', return_indices=True, sampling=[2, 2])
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 4, 4, 4, 0, 0, 0],
- [0, 0, 4, 8, 16, 8, 4, 0, 0],
- [0, 0, 4, 16, 32, 16, 4, 0, 0],
- [0, 0, 4, 8, 16, 8, 4, 0, 0],
- [0, 0, 0, 4, 4, 4, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out * out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 3, 2, 1, 2, 3, 3, 3],
- [4, 4, 4, 4, 6, 4, 4, 4, 4],
- [5, 5, 6, 6, 7, 6, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 1, 2, 4, 6, 7, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_bf06(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_bf(
- data, 'euclidean', return_indices=True, sampling=[2, 1])
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 4, 1, 0, 0, 0],
- [0, 0, 1, 4, 8, 4, 1, 0, 0],
- [0, 0, 1, 4, 9, 4, 1, 0, 0],
- [0, 0, 1, 4, 8, 4, 1, 0, 0],
- [0, 0, 0, 1, 4, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out * out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 2, 2, 2, 2, 2],
- [3, 3, 3, 3, 2, 3, 3, 3, 3],
- [4, 4, 4, 4, 4, 4, 4, 4, 4],
- [5, 5, 5, 5, 6, 5, 5, 5, 5],
- [6, 6, 6, 6, 7, 6, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 6, 6, 6, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 1, 1, 7, 7, 7, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_cdt01(self):
- # chamfer type distance (cdt) transform
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_cdt(
- data, 'cityblock', return_indices=True)
- bf = ndimage.distance_transform_bf(data, 'cityblock')
- assert_array_almost_equal(bf, out)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 1, 1, 1, 2, 2, 2],
- [3, 3, 2, 1, 1, 1, 2, 3, 3],
- [4, 4, 4, 4, 1, 4, 4, 4, 4],
- [5, 5, 5, 5, 7, 7, 6, 5, 5],
- [6, 6, 6, 6, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 1, 1, 4, 7, 7, 7, 8],
- [0, 1, 1, 1, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_cdt02(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_cdt(data, 'chessboard',
- return_indices=True)
- bf = ndimage.distance_transform_bf(data, 'chessboard')
- assert_array_almost_equal(bf, out)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 1, 1, 1, 2, 2, 2],
- [3, 3, 2, 2, 1, 2, 2, 3, 3],
- [4, 4, 3, 2, 2, 2, 3, 4, 4],
- [5, 5, 4, 6, 7, 6, 4, 5, 5],
- [6, 6, 6, 6, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 3, 4, 6, 7, 8],
- [0, 1, 1, 2, 2, 6, 6, 7, 8],
- [0, 1, 1, 1, 2, 6, 7, 7, 8],
- [0, 1, 1, 2, 6, 6, 7, 7, 8],
- [0, 1, 2, 2, 5, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_cdt03(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- tdt, tft = ndimage.distance_transform_cdt(data, return_indices=True)
- dts = []
- fts = []
- dt = numpy.zeros(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_cdt(data, distances=dt)
- dts.append(dt)
- ft = ndimage.distance_transform_cdt(
- data, return_distances=False, return_indices=True)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_cdt(
- data, return_distances=False, return_indices=True, indices=ft)
- fts.append(ft)
- dt, ft = ndimage.distance_transform_cdt(
- data, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.int32)
- ft = ndimage.distance_transform_cdt(
- data, distances=dt, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- dt = ndimage.distance_transform_cdt(
- data, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.int32)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_cdt(data, distances=dt,
- return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- for dt in dts:
- assert_array_almost_equal(tdt, dt)
- for ft in fts:
- assert_array_almost_equal(tft, ft)
- def test_distance_transform_edt01(self):
- # euclidean distance transform (edt)
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out, ft = ndimage.distance_transform_edt(data, return_indices=True)
- bf = ndimage.distance_transform_bf(data, 'euclidean')
- assert_array_almost_equal(bf, out)
- dt = ft - numpy.indices(ft.shape[1:], dtype=ft.dtype)
- dt = dt.astype(numpy.float64)
- numpy.multiply(dt, dt, dt)
- dt = numpy.add.reduce(dt, axis=0)
- numpy.sqrt(dt, dt)
- assert_array_almost_equal(bf, dt)
- def test_distance_transform_edt02(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- tdt, tft = ndimage.distance_transform_edt(data, return_indices=True)
- dts = []
- fts = []
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ndimage.distance_transform_edt(data, distances=dt)
- dts.append(dt)
- ft = ndimage.distance_transform_edt(
- data, return_distances=0, return_indices=True)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_edt(
- data, return_distances=False, return_indices=True, indices=ft)
- fts.append(ft)
- dt, ft = ndimage.distance_transform_edt(
- data, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = ndimage.distance_transform_edt(
- data, distances=dt, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- dt = ndimage.distance_transform_edt(
- data, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_edt(
- data, distances=dt, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- for dt in dts:
- assert_array_almost_equal(tdt, dt)
- for ft in fts:
- assert_array_almost_equal(tft, ft)
- def test_distance_transform_edt03(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 2])
- out = ndimage.distance_transform_edt(data, sampling=[2, 2])
- assert_array_almost_equal(ref, out)
- def test_distance_transform_edt4(self):
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], type_)
- ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 1])
- out = ndimage.distance_transform_edt(data, sampling=[2, 1])
- assert_array_almost_equal(ref, out)
- def test_distance_transform_edt5(self):
- # Ticket #954 regression test
- out = ndimage.distance_transform_edt(False)
- assert_array_almost_equal(out, [0.])
- def test_generate_structure01(self):
- struct = ndimage.generate_binary_structure(0, 1)
- assert_array_almost_equal(struct, 1)
- def test_generate_structure02(self):
- struct = ndimage.generate_binary_structure(1, 1)
- assert_array_almost_equal(struct, [1, 1, 1])
- def test_generate_structure03(self):
- struct = ndimage.generate_binary_structure(2, 1)
- assert_array_almost_equal(struct, [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]])
- def test_generate_structure04(self):
- struct = ndimage.generate_binary_structure(2, 2)
- assert_array_almost_equal(struct, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- def test_iterate_structure01(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- out = ndimage.iterate_structure(struct, 2)
- assert_array_almost_equal(out, [[0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0]])
- def test_iterate_structure02(self):
- struct = [[0, 1],
- [1, 1],
- [0, 1]]
- out = ndimage.iterate_structure(struct, 2)
- assert_array_almost_equal(out, [[0, 0, 1],
- [0, 1, 1],
- [1, 1, 1],
- [0, 1, 1],
- [0, 0, 1]])
- def test_iterate_structure03(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- out = ndimage.iterate_structure(struct, 2, 1)
- expected = [[0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0]]
- assert_array_almost_equal(out[0], expected)
- assert_equal(out[1], [2, 2])
- def test_binary_erosion01(self):
- for type_ in self.types:
- data = numpy.ones([], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, 1)
- def test_binary_erosion02(self):
- for type_ in self.types:
- data = numpy.ones([], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, 1)
- def test_binary_erosion03(self):
- for type_ in self.types:
- data = numpy.ones([1], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0])
- def test_binary_erosion04(self):
- for type_ in self.types:
- data = numpy.ones([1], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1])
- def test_binary_erosion05(self):
- for type_ in self.types:
- data = numpy.ones([3], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0, 1, 0])
- def test_binary_erosion06(self):
- for type_ in self.types:
- data = numpy.ones([3], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1, 1, 1])
- def test_binary_erosion07(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0, 1, 1, 1, 0])
- def test_binary_erosion08(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1, 1, 1, 1, 1])
- def test_binary_erosion09(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0, 0, 0, 0, 0])
- def test_binary_erosion10(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1, 0, 0, 0, 1])
- def test_binary_erosion11(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- struct = [1, 0, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, [1, 0, 1, 0, 1])
- def test_binary_erosion12(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- struct = [1, 0, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1,
- origin=-1)
- assert_array_almost_equal(out, [0, 1, 0, 1, 1])
- def test_binary_erosion13(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- struct = [1, 0, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1,
- origin=1)
- assert_array_almost_equal(out, [1, 1, 0, 1, 0])
- def test_binary_erosion14(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- struct = [1, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, [1, 1, 0, 0, 1])
- def test_binary_erosion15(self):
- for type_ in self.types:
- data = numpy.ones([5], type_)
- data[2] = 0
- struct = [1, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1,
- origin=-1)
- assert_array_almost_equal(out, [1, 0, 0, 1, 1])
- def test_binary_erosion16(self):
- for type_ in self.types:
- data = numpy.ones([1, 1], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [[1]])
- def test_binary_erosion17(self):
- for type_ in self.types:
- data = numpy.ones([1, 1], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [[0]])
- def test_binary_erosion18(self):
- for type_ in self.types:
- data = numpy.ones([1, 3], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [[0, 0, 0]])
- def test_binary_erosion19(self):
- for type_ in self.types:
- data = numpy.ones([1, 3], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [[1, 1, 1]])
- def test_binary_erosion20(self):
- for type_ in self.types:
- data = numpy.ones([3, 3], type_)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [[0, 0, 0],
- [0, 1, 0],
- [0, 0, 0]])
- def test_binary_erosion21(self):
- for type_ in self.types:
- data = numpy.ones([3, 3], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- def test_binary_erosion22(self):
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion23(self):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion24(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion25(self):
- struct = [[0, 1, 0],
- [1, 0, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 0, 1, 1],
- [0, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion26(self):
- struct = [[0, 1, 0],
- [1, 0, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1],
- [0, 0, 0, 0, 1, 0, 0, 1],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 0, 1, 1],
- [0, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_erosion(data, struct, border_value=1,
- origin=(-1, -1))
- assert_array_almost_equal(out, expected)
- def test_binary_erosion27(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct, border_value=1,
- iterations=2)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion28(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=2, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion29(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, iterations=3)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion30(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=3, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion31(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 1, 0, 1],
- [0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 1]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=1, output=out, origin=(-1, -1))
- assert_array_almost_equal(out, expected)
- def test_binary_erosion32(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, iterations=2)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion33(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 0, 0, 0, 1],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- mask = [[1, 1, 1, 1, 1, 0, 0],
- [1, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 1, 0, 0, 1],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, mask=mask, iterations=-1)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion34(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- mask = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, mask=mask)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion35(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- mask = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- tmp = [[0, 0, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 1, 0, 1],
- [0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 1]]
- expected = numpy.logical_and(tmp, mask)
- tmp = numpy.logical_and(data, numpy.logical_not(mask))
- expected = numpy.logical_or(expected, tmp)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=1, output=out,
- origin=(-1, -1), mask=mask)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion36(self):
- struct = [[0, 1, 0],
- [1, 0, 1],
- [0, 1, 0]]
- mask = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- tmp = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1],
- [0, 0, 0, 0, 1, 0, 0, 1],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 0, 1, 1],
- [0, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- expected = numpy.logical_and(tmp, mask)
- tmp = numpy.logical_and(data, numpy.logical_not(mask))
- expected = numpy.logical_or(expected, tmp)
- out = ndimage.binary_erosion(data, struct, mask=mask,
- border_value=1, origin=(-1, -1))
- assert_array_almost_equal(out, expected)
- def test_binary_erosion37(self):
- a = numpy.array([[1, 0, 1],
- [0, 1, 0],
- [1, 0, 1]], dtype=bool)
- b = numpy.zeros_like(a)
- out = ndimage.binary_erosion(a, structure=a, output=b, iterations=0,
- border_value=True, brute_force=True)
- assert_(out is b)
- assert_array_equal(
- ndimage.binary_erosion(a, structure=a, iterations=0,
- border_value=True),
- b)
- def test_binary_dilation01(self):
- for type_ in self.types:
- data = numpy.ones([], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, 1)
- def test_binary_dilation02(self):
- for type_ in self.types:
- data = numpy.zeros([], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, 0)
- def test_binary_dilation03(self):
- for type_ in self.types:
- data = numpy.ones([1], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1])
- def test_binary_dilation04(self):
- for type_ in self.types:
- data = numpy.zeros([1], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [0])
- def test_binary_dilation05(self):
- for type_ in self.types:
- data = numpy.ones([3], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1])
- def test_binary_dilation06(self):
- for type_ in self.types:
- data = numpy.zeros([3], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [0, 0, 0])
- def test_binary_dilation07(self):
- for type_ in self.types:
- data = numpy.zeros([3], type_)
- data[1] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1])
- def test_binary_dilation08(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- data[3] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1, 1, 1])
- def test_binary_dilation09(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1, 0, 0])
- def test_binary_dilation10(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- out = ndimage.binary_dilation(data, origin=-1)
- assert_array_almost_equal(out, [0, 1, 1, 1, 0])
- def test_binary_dilation11(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- out = ndimage.binary_dilation(data, origin=1)
- assert_array_almost_equal(out, [1, 1, 0, 0, 0])
- def test_binary_dilation12(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, [1, 0, 1, 0, 0])
- def test_binary_dilation13(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct, border_value=1)
- assert_array_almost_equal(out, [1, 0, 1, 0, 1])
- def test_binary_dilation14(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct, origin=-1)
- assert_array_almost_equal(out, [0, 1, 0, 1, 0])
- def test_binary_dilation15(self):
- for type_ in self.types:
- data = numpy.zeros([5], type_)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct,
- origin=-1, border_value=1)
- assert_array_almost_equal(out, [1, 1, 0, 1, 0])
- def test_binary_dilation16(self):
- for type_ in self.types:
- data = numpy.ones([1, 1], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[1]])
- def test_binary_dilation17(self):
- for type_ in self.types:
- data = numpy.zeros([1, 1], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[0]])
- def test_binary_dilation18(self):
- for type_ in self.types:
- data = numpy.ones([1, 3], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[1, 1, 1]])
- def test_binary_dilation19(self):
- for type_ in self.types:
- data = numpy.ones([3, 3], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- def test_binary_dilation20(self):
- for type_ in self.types:
- data = numpy.zeros([3, 3], type_)
- data[1, 1] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]])
- def test_binary_dilation21(self):
- struct = ndimage.generate_binary_structure(2, 2)
- for type_ in self.types:
- data = numpy.zeros([3, 3], type_)
- data[1, 1] = 1
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- def test_binary_dilation22(self):
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation23(self):
- expected = [[1, 1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 0, 0, 0, 0, 1],
- [1, 1, 0, 0, 0, 1, 0, 1],
- [1, 0, 0, 1, 1, 1, 1, 1],
- [1, 0, 1, 1, 1, 1, 0, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [1, 0, 1, 0, 0, 1, 0, 1],
- [1, 1, 1, 1, 1, 1, 1, 1]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation24(self):
- expected = [[1, 1, 0, 0, 0, 0, 0, 0],
- [1, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 0, 0],
- [0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, origin=(1, 1))
- assert_array_almost_equal(out, expected)
- def test_binary_dilation25(self):
- expected = [[1, 1, 0, 0, 0, 0, 1, 1],
- [1, 0, 0, 0, 1, 0, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [0, 1, 0, 0, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, origin=(1, 1), border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation26(self):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation27(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation28(self):
- expected = [[1, 1, 1, 1],
- [1, 0, 0, 1],
- [1, 0, 0, 1],
- [1, 1, 1, 1]]
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation29(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_dilation(data, struct, iterations=2)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation30(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_dilation(data, struct, iterations=2, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation31(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_dilation(data, struct, iterations=3)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation32(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_dilation(data, struct, iterations=3, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation33(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_dilation(data, struct, iterations=-1,
- mask=mask, border_value=0)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation34(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.zeros(mask.shape, bool)
- out = ndimage.binary_dilation(data, struct, iterations=-1,
- mask=mask, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation35(self):
- tmp = [[1, 1, 0, 0, 0, 0, 1, 1],
- [1, 0, 0, 0, 1, 0, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [0, 1, 0, 0, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- mask = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- expected = numpy.logical_and(tmp, mask)
- tmp = numpy.logical_and(data, numpy.logical_not(mask))
- expected = numpy.logical_or(expected, tmp)
- for type_ in self.types:
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_dilation(data, mask=mask,
- origin=(1, 1), border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_propagation01(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_propagation(data, struct,
- mask=mask, border_value=0)
- assert_array_almost_equal(out, expected)
- def test_binary_propagation02(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.zeros(mask.shape, bool)
- out = ndimage.binary_propagation(data, struct,
- mask=mask, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_opening01(self):
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 0, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_opening(data)
- assert_array_almost_equal(out, expected)
- def test_binary_opening02(self):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_opening(data, struct)
- assert_array_almost_equal(out, expected)
- def test_binary_closing01(self):
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 0, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_closing(data)
- assert_array_almost_equal(out, expected)
- def test_binary_closing02(self):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_closing(data, struct)
- assert_array_almost_equal(out, expected)
- def test_binary_fill_holes01(self):
- expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_fill_holes(data)
- assert_array_almost_equal(out, expected)
- def test_binary_fill_holes02(self):
- expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_fill_holes(data)
- assert_array_almost_equal(out, expected)
- def test_binary_fill_holes03(self):
- expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 1, 1, 1],
- [0, 1, 1, 1, 0, 1, 1, 1],
- [0, 1, 1, 1, 0, 1, 1, 1],
- [0, 0, 1, 0, 0, 1, 1, 1],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 1, 0, 1, 1, 1],
- [0, 1, 0, 1, 0, 1, 0, 1],
- [0, 1, 0, 1, 0, 1, 0, 1],
- [0, 0, 1, 0, 0, 1, 1, 1],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_fill_holes(data)
- assert_array_almost_equal(out, expected)
- def test_grey_erosion01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.grey_erosion(array, footprint=footprint)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]], output)
- def test_grey_erosion02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- output = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]], output)
- def test_grey_erosion03(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[1, 1, 1], [1, 1, 1]]
- output = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[1, 1, 0, 0, 0],
- [1, 2, 0, 2, 0],
- [4, 4, 2, 2, 0]], output)
- def test_grey_dilation01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[0, 1, 1], [1, 0, 1]]
- output = ndimage.grey_dilation(array, footprint=footprint)
- assert_array_almost_equal([[7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7],
- [8, 8, 8, 7, 7]], output)
- def test_grey_dilation02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[0, 1, 1], [1, 0, 1]]
- structure = [[0, 0, 0], [0, 0, 0]]
- output = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7],
- [8, 8, 8, 7, 7]], output)
- def test_grey_dilation03(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[0, 1, 1], [1, 0, 1]]
- structure = [[1, 1, 1], [1, 1, 1]]
- output = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[8, 8, 10, 10, 6],
- [8, 10, 9, 10, 8],
- [9, 9, 9, 8, 8]], output)
- def test_grey_opening01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- tmp = ndimage.grey_erosion(array, footprint=footprint)
- expected = ndimage.grey_dilation(tmp, footprint=footprint)
- output = ndimage.grey_opening(array, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_grey_opening02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = ndimage.grey_dilation(tmp, footprint=footprint,
- structure=structure)
- output = ndimage.grey_opening(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_grey_closing01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- tmp = ndimage.grey_dilation(array, footprint=footprint)
- expected = ndimage.grey_erosion(tmp, footprint=footprint)
- output = ndimage.grey_closing(array, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_grey_closing02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- expected = ndimage.grey_erosion(tmp, footprint=footprint,
- structure=structure)
- output = ndimage.grey_closing(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_morphological_gradient01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 - tmp2
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.morphological_gradient(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_morphological_gradient02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 - tmp2
- output = ndimage.morphological_gradient(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_morphological_laplace01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 + tmp2 - 2 * array
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.morphological_laplace(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_morphological_laplace02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 + tmp2 - 2 * array
- output = ndimage.morphological_laplace(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_white_tophat01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_opening(array, footprint=footprint,
- structure=structure)
- expected = array - tmp
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.white_tophat(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_white_tophat02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_opening(array, footprint=footprint,
- structure=structure)
- expected = array - tmp
- output = ndimage.white_tophat(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_white_tophat03(self):
- array = numpy.array([[1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- expected = numpy.array([[0, 1, 1, 0, 0, 0, 0],
- [1, 0, 0, 1, 1, 1, 0],
- [1, 0, 0, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 0, 1],
- [0, 1, 1, 0, 1, 0, 1],
- [0, 1, 1, 0, 0, 0, 1],
- [0, 0, 0, 1, 1, 1, 1]], dtype=numpy.bool_)
- output = ndimage.white_tophat(array, structure=structure)
- assert_array_equal(expected, output)
- def test_white_tophat04(self):
- array = numpy.eye(5, dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- # Check that type mismatch is properly handled
- output = numpy.empty_like(array, dtype=numpy.float)
- ndimage.white_tophat(array, structure=structure, output=output)
- def test_black_tophat01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_closing(array, footprint=footprint,
- structure=structure)
- expected = tmp - array
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.black_tophat(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_black_tophat02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_closing(array, footprint=footprint,
- structure=structure)
- expected = tmp - array
- output = ndimage.black_tophat(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_black_tophat03(self):
- array = numpy.array([[1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- expected = numpy.array([[0, 1, 1, 1, 1, 1, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 0, 0, 0, 1, 0, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 1, 1, 1, 1, 1, 0]], dtype=numpy.bool_)
- output = ndimage.black_tophat(array, structure=structure)
- assert_array_equal(expected, output)
- def test_black_tophat04(self):
- array = numpy.eye(5, dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- # Check that type mismatch is properly handled
- output = numpy.empty_like(array, dtype=numpy.float)
- ndimage.black_tophat(array, structure=structure, output=output)
- def test_hit_or_miss01(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 1, 0, 0, 0],
- [1, 1, 1, 0, 0],
- [0, 1, 0, 1, 1],
- [0, 0, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 1],
- [0, 1, 1, 1, 1],
- [0, 0, 0, 0, 0]], type_)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_hit_or_miss(data, struct, output=out)
- assert_array_almost_equal(expected, out)
- def test_hit_or_miss02(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0],
- [1, 1, 1, 0, 0, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_hit_or_miss(data, struct)
- assert_array_almost_equal(expected, out)
- def test_hit_or_miss03(self):
- struct1 = [[0, 0, 0],
- [1, 1, 1],
- [0, 0, 0]]
- struct2 = [[1, 1, 1],
- [0, 0, 0],
- [1, 1, 1]]
- expected = [[0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- for type_ in self.types:
- data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 1, 0],
- [0, 0, 0, 0, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], type_)
- out = ndimage.binary_hit_or_miss(data, struct1, struct2)
- assert_array_almost_equal(expected, out)
- class TestDilateFix:
- def setup_method(self):
- # dilation related setup
- self.array = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0]], dtype=numpy.uint8)
- self.sq3x3 = numpy.ones((3, 3))
- dilated3x3 = ndimage.binary_dilation(self.array, structure=self.sq3x3)
- self.dilated3x3 = dilated3x3.view(numpy.uint8)
- def test_dilation_square_structure(self):
- result = ndimage.grey_dilation(self.array, structure=self.sq3x3)
- # +1 accounts for difference between grey and binary dilation
- assert_array_almost_equal(result, self.dilated3x3 + 1)
- def test_dilation_scalar_size(self):
- result = ndimage.grey_dilation(self.array, size=3)
- assert_array_almost_equal(result, self.dilated3x3)
- class TestBinaryOpeningClosing:
- def setup_method(self):
- a = numpy.zeros((5,5), dtype=bool)
- a[1:4, 1:4] = True
- a[4,4] = True
- self.array = a
- self.sq3x3 = numpy.ones((3,3))
- self.opened_old = ndimage.binary_opening(self.array, self.sq3x3,
- 1, None, 0)
- self.closed_old = ndimage.binary_closing(self.array, self.sq3x3,
- 1, None, 0)
- def test_opening_new_arguments(self):
- opened_new = ndimage.binary_opening(self.array, self.sq3x3, 1, None,
- 0, None, 0, False)
- assert_array_equal(opened_new, self.opened_old)
- def test_closing_new_arguments(self):
- closed_new = ndimage.binary_closing(self.array, self.sq3x3, 1, None,
- 0, None, 0, False)
- assert_array_equal(closed_new, self.closed_old)
|