123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552 |
- """
- Unit tests for the differential global minimization algorithm.
- """
- import multiprocessing
- from scipy.optimize import _differentialevolution
- from scipy.optimize._differentialevolution import DifferentialEvolutionSolver
- from scipy.optimize import differential_evolution
- import numpy as np
- from scipy.optimize import rosen
- from numpy.testing import (assert_equal, assert_allclose,
- assert_almost_equal,
- assert_string_equal, assert_)
- from pytest import raises as assert_raises, warns
- class TestDifferentialEvolutionSolver(object):
- def setup_method(self):
- self.old_seterr = np.seterr(invalid='raise')
- self.limits = np.array([[0., 0.],
- [2., 2.]])
- self.bounds = [(0., 2.), (0., 2.)]
- self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
- [(0, 100)])
- # dummy_solver2 will be used to test mutation strategies
- self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
- [(0, 1)],
- popsize=7,
- mutation=0.5)
- # create a population that's only 7 members long
- # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
- population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
- self.dummy_solver2.population = population
- def teardown_method(self):
- np.seterr(**self.old_seterr)
- def quadratic(self, x):
- return x[0]**2
- def test__strategy_resolves(self):
- # test that the correct mutation function is resolved by
- # different requested strategy arguments
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='best1exp')
- assert_equal(solver.strategy, 'best1exp')
- assert_equal(solver.mutation_func.__name__, '_best1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='best1bin')
- assert_equal(solver.strategy, 'best1bin')
- assert_equal(solver.mutation_func.__name__, '_best1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='rand1bin')
- assert_equal(solver.strategy, 'rand1bin')
- assert_equal(solver.mutation_func.__name__, '_rand1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='rand1exp')
- assert_equal(solver.strategy, 'rand1exp')
- assert_equal(solver.mutation_func.__name__, '_rand1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='rand2exp')
- assert_equal(solver.strategy, 'rand2exp')
- assert_equal(solver.mutation_func.__name__, '_rand2')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='best2bin')
- assert_equal(solver.strategy, 'best2bin')
- assert_equal(solver.mutation_func.__name__, '_best2')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='rand2bin')
- assert_equal(solver.strategy, 'rand2bin')
- assert_equal(solver.mutation_func.__name__, '_rand2')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='rand2exp')
- assert_equal(solver.strategy, 'rand2exp')
- assert_equal(solver.mutation_func.__name__, '_rand2')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='randtobest1bin')
- assert_equal(solver.strategy, 'randtobest1bin')
- assert_equal(solver.mutation_func.__name__, '_randtobest1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='randtobest1exp')
- assert_equal(solver.strategy, 'randtobest1exp')
- assert_equal(solver.mutation_func.__name__, '_randtobest1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='currenttobest1bin')
- assert_equal(solver.strategy, 'currenttobest1bin')
- assert_equal(solver.mutation_func.__name__, '_currenttobest1')
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='currenttobest1exp')
- assert_equal(solver.strategy, 'currenttobest1exp')
- assert_equal(solver.mutation_func.__name__, '_currenttobest1')
- def test__mutate1(self):
- # strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
- result = np.array([0.05])
- trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
- assert_allclose(trial, result)
- result = np.array([0.25])
- trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
- assert_allclose(trial, result)
- def test__mutate2(self):
- # strategies */2/*, i.e. rand/2/bin, best/2/exp, etc.
- # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
- result = np.array([-0.1])
- trial = self.dummy_solver2._best2((2, 3, 4, 5, 6))
- assert_allclose(trial, result)
- result = np.array([0.1])
- trial = self.dummy_solver2._rand2((2, 3, 4, 5, 6))
- assert_allclose(trial, result)
- def test__randtobest1(self):
- # strategies randtobest/1/*
- result = np.array([0.15])
- trial = self.dummy_solver2._randtobest1((2, 3, 4, 5, 6))
- assert_allclose(trial, result)
- def test__currenttobest1(self):
- # strategies currenttobest/1/*
- result = np.array([0.1])
- trial = self.dummy_solver2._currenttobest1(1, (2, 3, 4, 5, 6))
- assert_allclose(trial, result)
- def test_can_init_with_dithering(self):
- mutation = (0.5, 1)
- solver = DifferentialEvolutionSolver(self.quadratic,
- self.bounds,
- mutation=mutation)
- assert_equal(solver.dither, list(mutation))
- def test_invalid_mutation_values_arent_accepted(self):
- func = rosen
- mutation = (0.5, 3)
- assert_raises(ValueError,
- DifferentialEvolutionSolver,
- func,
- self.bounds,
- mutation=mutation)
- mutation = (-1, 1)
- assert_raises(ValueError,
- DifferentialEvolutionSolver,
- func,
- self.bounds,
- mutation=mutation)
- mutation = (0.1, np.nan)
- assert_raises(ValueError,
- DifferentialEvolutionSolver,
- func,
- self.bounds,
- mutation=mutation)
- mutation = 0.5
- solver = DifferentialEvolutionSolver(func,
- self.bounds,
- mutation=mutation)
- assert_equal(0.5, solver.scale)
- assert_equal(None, solver.dither)
- def test__scale_parameters(self):
- trial = np.array([0.3])
- assert_equal(30, self.dummy_solver._scale_parameters(trial))
- # it should also work with the limits reversed
- self.dummy_solver.limits = np.array([[100], [0.]])
- assert_equal(30, self.dummy_solver._scale_parameters(trial))
- def test__unscale_parameters(self):
- trial = np.array([30])
- assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
- # it should also work with the limits reversed
- self.dummy_solver.limits = np.array([[100], [0.]])
- assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
- def test__ensure_constraint(self):
- trial = np.array([1.1, -100, 0.9, 2., 300., -0.00001])
- self.dummy_solver._ensure_constraint(trial)
- assert_equal(trial[2], 0.9)
- assert_(np.logical_and(trial >= 0, trial <= 1).all())
- def test_differential_evolution(self):
- # test that the Jmin of DifferentialEvolutionSolver
- # is the same as the function evaluation
- solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
- result = solver.solve()
- assert_almost_equal(result.fun, self.quadratic(result.x))
- def test_best_solution_retrieval(self):
- # test that the getter property method for the best solution works.
- solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
- result = solver.solve()
- assert_almost_equal(result.x, solver.x)
- def test_callback_terminates(self):
- # test that if the callback returns true, then the minimization halts
- bounds = [(0, 2), (0, 2)]
- def callback(param, convergence=0.):
- return True
- result = differential_evolution(rosen, bounds, callback=callback)
- assert_string_equal(result.message,
- 'callback function requested stop early '
- 'by returning True')
- def test_args_tuple_is_passed(self):
- # test that the args tuple is passed to the cost function properly.
- bounds = [(-10, 10)]
- args = (1., 2., 3.)
- def quadratic(x, *args):
- if type(args) != tuple:
- raise ValueError('args should be a tuple')
- return args[0] + args[1] * x + args[2] * x**2.
- result = differential_evolution(quadratic,
- bounds,
- args=args,
- polish=True)
- assert_almost_equal(result.fun, 2 / 3.)
- def test_init_with_invalid_strategy(self):
- # test that passing an invalid strategy raises ValueError
- func = rosen
- bounds = [(-3, 3)]
- assert_raises(ValueError,
- differential_evolution,
- func,
- bounds,
- strategy='abc')
- def test_bounds_checking(self):
- # test that the bounds checking works
- func = rosen
- bounds = [(-3, None)]
- assert_raises(ValueError,
- differential_evolution,
- func,
- bounds)
- bounds = [(-3)]
- assert_raises(ValueError,
- differential_evolution,
- func,
- bounds)
- bounds = [(-3, 3), (3, 4, 5)]
- assert_raises(ValueError,
- differential_evolution,
- func,
- bounds)
- def test_select_samples(self):
- # select_samples should return 5 separate random numbers.
- limits = np.arange(12., dtype='float64').reshape(2, 6)
- bounds = list(zip(limits[0, :], limits[1, :]))
- solver = DifferentialEvolutionSolver(None, bounds, popsize=1)
- candidate = 0
- r1, r2, r3, r4, r5 = solver._select_samples(candidate, 5)
- assert_equal(
- len(np.unique(np.array([candidate, r1, r2, r3, r4, r5]))), 6)
- def test_maxiter_stops_solve(self):
- # test that if the maximum number of iterations is exceeded
- # the solver stops.
- solver = DifferentialEvolutionSolver(rosen, self.bounds, maxiter=1)
- result = solver.solve()
- assert_equal(result.success, False)
- assert_equal(result.message,
- 'Maximum number of iterations has been exceeded.')
- def test_maxfun_stops_solve(self):
- # test that if the maximum number of function evaluations is exceeded
- # during initialisation the solver stops
- solver = DifferentialEvolutionSolver(rosen, self.bounds, maxfun=1,
- polish=False)
- result = solver.solve()
- assert_equal(result.nfev, 2)
- assert_equal(result.success, False)
- assert_equal(result.message,
- 'Maximum number of function evaluations has '
- 'been exceeded.')
- # test that if the maximum number of function evaluations is exceeded
- # during the actual minimisation, then the solver stops.
- # Have to turn polishing off, as this will still occur even if maxfun
- # is reached. For popsize=5 and len(bounds)=2, then there are only 10
- # function evaluations during initialisation.
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- popsize=5,
- polish=False,
- maxfun=40)
- result = solver.solve()
- assert_equal(result.nfev, 41)
- assert_equal(result.success, False)
- assert_equal(result.message,
- 'Maximum number of function evaluations has '
- 'been exceeded.')
- # now repeat for updating='deferred version
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- popsize=5,
- polish=False,
- maxfun=40,
- updating='deferred')
- result = solver.solve()
- assert_equal(result.nfev, 40)
- assert_equal(result.success, False)
- assert_equal(result.message,
- 'Maximum number of function evaluations has '
- 'been reached.')
- def test_quadratic(self):
- # test the quadratic function from object
- solver = DifferentialEvolutionSolver(self.quadratic,
- [(-100, 100)],
- tol=0.02)
- solver.solve()
- assert_equal(np.argmin(solver.population_energies), 0)
- def test_quadratic_from_diff_ev(self):
- # test the quadratic function from differential_evolution function
- differential_evolution(self.quadratic,
- [(-100, 100)],
- tol=0.02)
- def test_seed_gives_repeatability(self):
- result = differential_evolution(self.quadratic,
- [(-100, 100)],
- polish=False,
- seed=1,
- tol=0.5)
- result2 = differential_evolution(self.quadratic,
- [(-100, 100)],
- polish=False,
- seed=1,
- tol=0.5)
- assert_equal(result.x, result2.x)
- assert_equal(result.nfev, result2.nfev)
- def test_exp_runs(self):
- # test whether exponential mutation loop runs
- solver = DifferentialEvolutionSolver(rosen,
- self.bounds,
- strategy='best1exp',
- maxiter=1)
- solver.solve()
- def test_gh_4511_regression(self):
- # This modification of the differential evolution docstring example
- # uses a custom popsize that had triggered an off-by-one error.
- # Because we do not care about solving the optimization problem in
- # this test, we use maxiter=1 to reduce the testing time.
- bounds = [(-5, 5), (-5, 5)]
- result = differential_evolution(rosen, bounds, popsize=1815, maxiter=1)
- def test_calculate_population_energies(self):
- # if popsize is 3 then the overall generation has size (6,)
- solver = DifferentialEvolutionSolver(rosen, self.bounds, popsize=3)
- solver._calculate_population_energies(solver.population)
- solver._promote_lowest_energy()
- assert_equal(np.argmin(solver.population_energies), 0)
- # initial calculation of the energies should require 6 nfev.
- assert_equal(solver._nfev, 6)
- def test_iteration(self):
- # test that DifferentialEvolutionSolver is iterable
- # if popsize is 3 then the overall generation has size (6,)
- solver = DifferentialEvolutionSolver(rosen, self.bounds, popsize=3,
- maxfun=12)
- x, fun = next(solver)
- assert_equal(np.size(x, 0), 2)
- # 6 nfev are required for initial calculation of energies, 6 nfev are
- # required for the evolution of the 6 population members.
- assert_equal(solver._nfev, 12)
- # the next generation should halt because it exceeds maxfun
- assert_raises(StopIteration, next, solver)
- # check a proper minimisation can be done by an iterable solver
- solver = DifferentialEvolutionSolver(rosen, self.bounds)
- for i, soln in enumerate(solver):
- x_current, fun_current = soln
- # need to have this otherwise the solver would never stop.
- if i == 1000:
- break
- assert_almost_equal(fun_current, 0)
- def test_convergence(self):
- solver = DifferentialEvolutionSolver(rosen, self.bounds, tol=0.2,
- polish=False)
- solver.solve()
- assert_(solver.convergence < 0.2)
- def test_maxiter_none_GH5731(self):
- # Pre 0.17 the previous default for maxiter and maxfun was None.
- # the numerical defaults are now 1000 and np.inf. However, some scripts
- # will still supply None for both of those, this will raise a TypeError
- # in the solve method.
- solver = DifferentialEvolutionSolver(rosen, self.bounds, maxiter=None,
- maxfun=None)
- solver.solve()
- def test_population_initiation(self):
- # test the different modes of population initiation
- # init must be either 'latinhypercube' or 'random'
- # raising ValueError is something else is passed in
- assert_raises(ValueError,
- DifferentialEvolutionSolver,
- *(rosen, self.bounds),
- **{'init': 'rubbish'})
- solver = DifferentialEvolutionSolver(rosen, self.bounds)
- # check that population initiation:
- # 1) resets _nfev to 0
- # 2) all population energies are np.inf
- solver.init_population_random()
- assert_equal(solver._nfev, 0)
- assert_(np.all(np.isinf(solver.population_energies)))
- solver.init_population_lhs()
- assert_equal(solver._nfev, 0)
- assert_(np.all(np.isinf(solver.population_energies)))
- # we should be able to initialise with our own array
- population = np.linspace(-1, 3, 10).reshape(5, 2)
- solver = DifferentialEvolutionSolver(rosen, self.bounds,
- init=population,
- strategy='best2bin',
- atol=0.01, seed=1, popsize=5)
- assert_equal(solver._nfev, 0)
- assert_(np.all(np.isinf(solver.population_energies)))
- assert_(solver.num_population_members == 5)
- assert_(solver.population_shape == (5, 2))
- # check that the population was initialised correctly
- unscaled_population = np.clip(solver._unscale_parameters(population),
- 0, 1)
- assert_almost_equal(solver.population[:5], unscaled_population)
- # population values need to be clipped to bounds
- assert_almost_equal(np.min(solver.population[:5]), 0)
- assert_almost_equal(np.max(solver.population[:5]), 1)
- # shouldn't be able to initialise with an array if it's the wrong shape
- # this would have too many parameters
- population = np.linspace(-1, 3, 15).reshape(5, 3)
- assert_raises(ValueError,
- DifferentialEvolutionSolver,
- *(rosen, self.bounds),
- **{'init': population})
- def test_infinite_objective_function(self):
- # Test that there are no problems if the objective function
- # returns inf on some runs
- def sometimes_inf(x):
- if x[0] < .5:
- return np.inf
- return x[1]
- bounds = [(0, 1), (0, 1)]
- x_fit = differential_evolution(sometimes_inf,
- bounds=[(0, 1), (0, 1)],
- disp=False)
- def test_deferred_updating(self):
- # check setting of deferred updating, with default workers
- bounds = [(0., 2.), (0., 2.), (0, 2), (0, 2)]
- solver = DifferentialEvolutionSolver(rosen, bounds, updating='deferred')
- assert_(solver._updating == 'deferred')
- assert_(solver._mapwrapper._mapfunc is map)
- solver.solve()
- def test_immediate_updating(self):
- # check setting of immediate updating, with default workers
- bounds = [(0., 2.), (0., 2.)]
- solver = DifferentialEvolutionSolver(rosen, bounds)
- assert_(solver._updating == 'immediate')
- # should raise a UserWarning because the updating='immediate'
- # is being overriden by the workers keyword
- with warns(UserWarning):
- solver = DifferentialEvolutionSolver(rosen, bounds, workers=2)
- assert_(solver._updating == 'deferred')
- def test_parallel(self):
- # smoke test for parallelisation with deferred updating
- bounds = [(0., 2.), (0., 2.)]
- try:
- p = multiprocessing.Pool(2)
- with DifferentialEvolutionSolver(rosen, bounds,
- updating='deferred',
- workers=p.map) as solver:
- assert_(solver._mapwrapper.pool is not None)
- assert_(solver._updating == 'deferred')
- solver.solve()
- finally:
- p.close()
- with DifferentialEvolutionSolver(rosen, bounds, updating='deferred',
- workers=2) as solver:
- assert_(solver._mapwrapper.pool is not None)
- assert_(solver._updating == 'deferred')
- solver.solve()
- def test_converged(self):
- solver = DifferentialEvolutionSolver(rosen, [(0, 2), (0, 2)])
- solver.solve()
- assert_(solver.converged())
|