123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150 |
- import numpy as np
- from numpy.linalg import lstsq
- from numpy.testing import assert_allclose, assert_equal, assert_
- from pytest import raises as assert_raises
- from scipy.sparse import rand
- from scipy.sparse.linalg import aslinearoperator
- from scipy.optimize import lsq_linear
- A = np.array([
- [0.171, -0.057],
- [-0.049, -0.248],
- [-0.166, 0.054],
- ])
- b = np.array([0.074, 1.014, -0.383])
- class BaseMixin(object):
- def setup_method(self):
- self.rnd = np.random.RandomState(0)
- def test_dense_no_bounds(self):
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, method=self.method, lsq_solver=lsq_solver)
- assert_allclose(res.x, lstsq(A, b, rcond=-1)[0])
- def test_dense_bounds(self):
- # Solutions for comparison are taken from MATLAB.
- lb = np.array([-1, -10])
- ub = np.array([1, 0])
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (lb, ub), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, lstsq(A, b, rcond=-1)[0])
- lb = np.array([0.0, -np.inf])
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (lb, np.inf), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, np.array([0.0, -4.084174437334673]),
- atol=1e-6)
- lb = np.array([-1, 0])
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (lb, np.inf), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, np.array([0.448427311733504, 0]),
- atol=1e-15)
- ub = np.array([np.inf, -5])
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (-np.inf, ub), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, np.array([-0.105560998682388, -5]))
- ub = np.array([-1, np.inf])
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (-np.inf, ub), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, np.array([-1, -4.181102129483254]))
- lb = np.array([0, -4])
- ub = np.array([1, 0])
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (lb, ub), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, np.array([0.005236663400791, -4]))
- def test_dense_rank_deficient(self):
- A = np.array([[-0.307, -0.184]])
- b = np.array([0.773])
- lb = [-0.1, -0.1]
- ub = [0.1, 0.1]
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (lb, ub), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.x, [-0.1, -0.1])
- A = np.array([
- [0.334, 0.668],
- [-0.516, -1.032],
- [0.192, 0.384],
- ])
- b = np.array([-1.436, 0.135, 0.909])
- lb = [0, -1]
- ub = [1, -0.5]
- for lsq_solver in self.lsq_solvers:
- res = lsq_linear(A, b, (lb, ub), method=self.method,
- lsq_solver=lsq_solver)
- assert_allclose(res.optimality, 0, atol=1e-11)
- def test_full_result(self):
- lb = np.array([0, -4])
- ub = np.array([1, 0])
- res = lsq_linear(A, b, (lb, ub), method=self.method)
- assert_allclose(res.x, [0.005236663400791, -4])
- r = A.dot(res.x) - b
- assert_allclose(res.cost, 0.5 * np.dot(r, r))
- assert_allclose(res.fun, r)
- assert_allclose(res.optimality, 0.0, atol=1e-12)
- assert_equal(res.active_mask, [0, -1])
- assert_(res.nit < 15)
- assert_(res.status == 1 or res.status == 3)
- assert_(isinstance(res.message, str))
- assert_(res.success)
- class SparseMixin(object):
- def test_sparse_and_LinearOperator(self):
- m = 5000
- n = 1000
- A = rand(m, n, random_state=0)
- b = self.rnd.randn(m)
- res = lsq_linear(A, b)
- assert_allclose(res.optimality, 0, atol=1e-6)
- A = aslinearoperator(A)
- res = lsq_linear(A, b)
- assert_allclose(res.optimality, 0, atol=1e-6)
- def test_sparse_bounds(self):
- m = 5000
- n = 1000
- A = rand(m, n, random_state=0)
- b = self.rnd.randn(m)
- lb = self.rnd.randn(n)
- ub = lb + 1
- res = lsq_linear(A, b, (lb, ub))
- assert_allclose(res.optimality, 0.0, atol=1e-6)
- res = lsq_linear(A, b, (lb, ub), lsmr_tol=1e-13)
- assert_allclose(res.optimality, 0.0, atol=1e-6)
- res = lsq_linear(A, b, (lb, ub), lsmr_tol='auto')
- assert_allclose(res.optimality, 0.0, atol=1e-6)
- class TestTRF(BaseMixin, SparseMixin):
- method = 'trf'
- lsq_solvers = ['exact', 'lsmr']
- class TestBVLS(BaseMixin):
- method = 'bvls'
- lsq_solvers = ['exact']
|