123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- """ Unit tests for nonlinear solvers
- Author: Ondrej Certik
- May 2007
- """
- from __future__ import division, print_function, absolute_import
- from numpy.testing import assert_
- import pytest
- from scipy._lib.six import xrange
- from scipy.optimize import nonlin, root
- from numpy import matrix, diag, dot
- from numpy.linalg import inv
- import numpy as np
- from .test_minpack import pressure_network
- SOLVERS = {'anderson': nonlin.anderson, 'diagbroyden': nonlin.diagbroyden,
- 'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing,
- 'broyden1': nonlin.broyden1, 'broyden2': nonlin.broyden2,
- 'krylov': nonlin.newton_krylov}
- MUST_WORK = {'anderson': nonlin.anderson, 'broyden1': nonlin.broyden1,
- 'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov}
- #-------------------------------------------------------------------------------
- # Test problems
- #-------------------------------------------------------------------------------
- def F(x):
- x = np.asmatrix(x).T
- d = matrix(diag([3,2,1.5,1,0.5]))
- c = 0.01
- f = -d*x - c*float(x.T*x)*x
- return f
- F.xin = [1,1,1,1,1]
- F.KNOWN_BAD = {}
- def F2(x):
- return x
- F2.xin = [1,2,3,4,5,6]
- F2.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
- 'excitingmixing': nonlin.excitingmixing}
- def F2_lucky(x):
- return x
- F2_lucky.xin = [0,0,0,0,0,0]
- F2_lucky.KNOWN_BAD = {}
- def F3(x):
- A = np.mat('-2 1 0; 1 -2 1; 0 1 -2')
- b = np.mat('1 2 3')
- return np.dot(A, x) - b
- F3.xin = [1,2,3]
- F3.KNOWN_BAD = {}
- def F4_powell(x):
- A = 1e4
- return [A*x[0]*x[1] - 1, np.exp(-x[0]) + np.exp(-x[1]) - (1 + 1/A)]
- F4_powell.xin = [-1, -2]
- F4_powell.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
- 'excitingmixing': nonlin.excitingmixing,
- 'diagbroyden': nonlin.diagbroyden}
- def F5(x):
- return pressure_network(x, 4, np.array([.5, .5, .5, .5]))
- F5.xin = [2., 0, 2, 0]
- F5.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
- 'linearmixing': nonlin.linearmixing,
- 'diagbroyden': nonlin.diagbroyden}
- def F6(x):
- x1, x2 = x
- J0 = np.array([[-4.256, 14.7],
- [0.8394989, 0.59964207]])
- v = np.array([(x1 + 3) * (x2**5 - 7) + 3*6,
- np.sin(x2 * np.exp(x1) - 1)])
- return -np.linalg.solve(J0, v)
- F6.xin = [-0.5, 1.4]
- F6.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
- 'linearmixing': nonlin.linearmixing,
- 'diagbroyden': nonlin.diagbroyden}
- #-------------------------------------------------------------------------------
- # Tests
- #-------------------------------------------------------------------------------
- class TestNonlin(object):
- """
- Check the Broyden methods for a few test problems.
- broyden1, broyden2, and newton_krylov must succeed for
- all functions. Some of the others don't -- tests in KNOWN_BAD are skipped.
- """
- def _check_nonlin_func(self, f, func, f_tol=1e-2):
- x = func(f, f.xin, f_tol=f_tol, maxiter=200, verbose=0)
- assert_(np.absolute(f(x)).max() < f_tol)
- def _check_root(self, f, method, f_tol=1e-2):
- res = root(f, f.xin, method=method,
- options={'ftol': f_tol, 'maxiter': 200, 'disp': 0})
- assert_(np.absolute(res.fun).max() < f_tol)
- @pytest.mark.xfail
- def _check_func_fail(self, *a, **kw):
- pass
- def test_problem_nonlin(self):
- for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
- for func in SOLVERS.values():
- if func in f.KNOWN_BAD.values():
- if func in MUST_WORK.values():
- self._check_func_fail(f, func)
- continue
- self._check_nonlin_func(f, func)
- def test_tol_norm_called(self):
- # Check that supplying tol_norm keyword to nonlin_solve works
- self._tol_norm_used = False
- def local_norm_func(x):
- self._tol_norm_used = True
- return np.absolute(x).max()
- nonlin.newton_krylov(F, F.xin, f_tol=1e-2, maxiter=200, verbose=0,
- tol_norm=local_norm_func)
- assert_(self._tol_norm_used)
- def test_problem_root(self):
- for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
- for meth in SOLVERS:
- if meth in f.KNOWN_BAD:
- if meth in MUST_WORK:
- self._check_func_fail(f, meth)
- continue
- self._check_root(f, meth)
- class TestSecant(object):
- """Check that some Jacobian approximations satisfy the secant condition"""
- xs = [np.array([1,2,3,4,5], float),
- np.array([2,3,4,5,1], float),
- np.array([3,4,5,1,2], float),
- np.array([4,5,1,2,3], float),
- np.array([9,1,9,1,3], float),
- np.array([0,1,9,1,3], float),
- np.array([5,5,7,1,1], float),
- np.array([1,2,7,5,1], float),]
- fs = [x**2 - 1 for x in xs]
- def _check_secant(self, jac_cls, npoints=1, **kw):
- """
- Check that the given Jacobian approximation satisfies secant
- conditions for last `npoints` points.
- """
- jac = jac_cls(**kw)
- jac.setup(self.xs[0], self.fs[0], None)
- for j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
- jac.update(x, f)
- for k in xrange(min(npoints, j+1)):
- dx = self.xs[j-k+1] - self.xs[j-k]
- df = self.fs[j-k+1] - self.fs[j-k]
- assert_(np.allclose(dx, jac.solve(df)))
- # Check that the `npoints` secant bound is strict
- if j >= npoints:
- dx = self.xs[j-npoints+1] - self.xs[j-npoints]
- df = self.fs[j-npoints+1] - self.fs[j-npoints]
- assert_(not np.allclose(dx, jac.solve(df)))
- def test_broyden1(self):
- self._check_secant(nonlin.BroydenFirst)
- def test_broyden2(self):
- self._check_secant(nonlin.BroydenSecond)
- def test_broyden1_update(self):
- # Check that BroydenFirst update works as for a dense matrix
- jac = nonlin.BroydenFirst(alpha=0.1)
- jac.setup(self.xs[0], self.fs[0], None)
- B = np.identity(5) * (-1/0.1)
- for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
- df = f - self.fs[last_j]
- dx = x - self.xs[last_j]
- B += (df - dot(B, dx))[:,None] * dx[None,:] / dot(dx, dx)
- jac.update(x, f)
- assert_(np.allclose(jac.todense(), B, rtol=1e-10, atol=1e-13))
- def test_broyden2_update(self):
- # Check that BroydenSecond update works as for a dense matrix
- jac = nonlin.BroydenSecond(alpha=0.1)
- jac.setup(self.xs[0], self.fs[0], None)
- H = np.identity(5) * (-0.1)
- for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
- df = f - self.fs[last_j]
- dx = x - self.xs[last_j]
- H += (dx - dot(H, df))[:,None] * df[None,:] / dot(df, df)
- jac.update(x, f)
- assert_(np.allclose(jac.todense(), inv(H), rtol=1e-10, atol=1e-13))
- def test_anderson(self):
- # Anderson mixing (with w0=0) satisfies secant conditions
- # for the last M iterates, see [Ey]_
- #
- # .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).
- self._check_secant(nonlin.Anderson, M=3, w0=0, npoints=3)
- class TestLinear(object):
- """Solve a linear equation;
- some methods find the exact solution in a finite number of steps"""
- def _check(self, jac, N, maxiter, complex=False, **kw):
- np.random.seed(123)
- A = np.random.randn(N, N)
- if complex:
- A = A + 1j*np.random.randn(N, N)
- b = np.random.randn(N)
- if complex:
- b = b + 1j*np.random.randn(N)
- def func(x):
- return dot(A, x) - b
- sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter,
- f_tol=1e-6, line_search=None, verbose=0)
- assert_(np.allclose(dot(A, sol), b, atol=1e-6))
- def test_broyden1(self):
- # Broyden methods solve linear systems exactly in 2*N steps
- self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, False)
- self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, True)
- def test_broyden2(self):
- # Broyden methods solve linear systems exactly in 2*N steps
- self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, False)
- self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, True)
- def test_anderson(self):
- # Anderson is rather similar to Broyden, if given enough storage space
- self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, False)
- self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, True)
- def test_krylov(self):
- # Krylov methods solve linear systems exactly in N inner steps
- self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10)
- self._check(nonlin.KrylovJacobian, 20, 2, True, inner_m=10)
- class TestJacobianDotSolve(object):
- """Check that solve/dot methods in Jacobian approximations are consistent"""
- def _func(self, x):
- return x**2 - 1 + np.dot(self.A, x)
- def _check_dot(self, jac_cls, complex=False, tol=1e-6, **kw):
- np.random.seed(123)
- N = 7
- def rand(*a):
- q = np.random.rand(*a)
- if complex:
- q = q + 1j*np.random.rand(*a)
- return q
- def assert_close(a, b, msg):
- d = abs(a - b).max()
- f = tol + abs(b).max()*tol
- if d > f:
- raise AssertionError('%s: err %g' % (msg, d))
- self.A = rand(N, N)
- # initialize
- x0 = np.random.rand(N)
- jac = jac_cls(**kw)
- jac.setup(x0, self._func(x0), self._func)
- # check consistency
- for k in xrange(2*N):
- v = rand(N)
- if hasattr(jac, '__array__'):
- Jd = np.array(jac)
- if hasattr(jac, 'solve'):
- Gv = jac.solve(v)
- Gv2 = np.linalg.solve(Jd, v)
- assert_close(Gv, Gv2, 'solve vs array')
- if hasattr(jac, 'rsolve'):
- Gv = jac.rsolve(v)
- Gv2 = np.linalg.solve(Jd.T.conj(), v)
- assert_close(Gv, Gv2, 'rsolve vs array')
- if hasattr(jac, 'matvec'):
- Jv = jac.matvec(v)
- Jv2 = np.dot(Jd, v)
- assert_close(Jv, Jv2, 'dot vs array')
- if hasattr(jac, 'rmatvec'):
- Jv = jac.rmatvec(v)
- Jv2 = np.dot(Jd.T.conj(), v)
- assert_close(Jv, Jv2, 'rmatvec vs array')
- if hasattr(jac, 'matvec') and hasattr(jac, 'solve'):
- Jv = jac.matvec(v)
- Jv2 = jac.solve(jac.matvec(Jv))
- assert_close(Jv, Jv2, 'dot vs solve')
- if hasattr(jac, 'rmatvec') and hasattr(jac, 'rsolve'):
- Jv = jac.rmatvec(v)
- Jv2 = jac.rmatvec(jac.rsolve(Jv))
- assert_close(Jv, Jv2, 'rmatvec vs rsolve')
- x = rand(N)
- jac.update(x, self._func(x))
- def test_broyden1(self):
- self._check_dot(nonlin.BroydenFirst, complex=False)
- self._check_dot(nonlin.BroydenFirst, complex=True)
- def test_broyden2(self):
- self._check_dot(nonlin.BroydenSecond, complex=False)
- self._check_dot(nonlin.BroydenSecond, complex=True)
- def test_anderson(self):
- self._check_dot(nonlin.Anderson, complex=False)
- self._check_dot(nonlin.Anderson, complex=True)
- def test_diagbroyden(self):
- self._check_dot(nonlin.DiagBroyden, complex=False)
- self._check_dot(nonlin.DiagBroyden, complex=True)
- def test_linearmixing(self):
- self._check_dot(nonlin.LinearMixing, complex=False)
- self._check_dot(nonlin.LinearMixing, complex=True)
- def test_excitingmixing(self):
- self._check_dot(nonlin.ExcitingMixing, complex=False)
- self._check_dot(nonlin.ExcitingMixing, complex=True)
- def test_krylov(self):
- self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3)
- self._check_dot(nonlin.KrylovJacobian, complex=True, tol=1e-3)
- class TestNonlinOldTests(object):
- """ Test case for a simple constrained entropy maximization problem
- (the machine translation example of Berger et al in
- Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
- """
- def test_broyden1(self):
- x = nonlin.broyden1(F,F.xin,iter=12,alpha=1)
- assert_(nonlin.norm(x) < 1e-9)
- assert_(nonlin.norm(F(x)) < 1e-9)
- def test_broyden2(self):
- x = nonlin.broyden2(F,F.xin,iter=12,alpha=1)
- assert_(nonlin.norm(x) < 1e-9)
- assert_(nonlin.norm(F(x)) < 1e-9)
- def test_anderson(self):
- x = nonlin.anderson(F,F.xin,iter=12,alpha=0.03,M=5)
- assert_(nonlin.norm(x) < 0.33)
- def test_linearmixing(self):
- x = nonlin.linearmixing(F,F.xin,iter=60,alpha=0.5)
- assert_(nonlin.norm(x) < 1e-7)
- assert_(nonlin.norm(F(x)) < 1e-7)
- def test_exciting(self):
- x = nonlin.excitingmixing(F,F.xin,iter=20,alpha=0.5)
- assert_(nonlin.norm(x) < 1e-5)
- assert_(nonlin.norm(F(x)) < 1e-5)
- def test_diagbroyden(self):
- x = nonlin.diagbroyden(F,F.xin,iter=11,alpha=1)
- assert_(nonlin.norm(x) < 1e-8)
- assert_(nonlin.norm(F(x)) < 1e-8)
- def test_root_broyden1(self):
- res = root(F, F.xin, method='broyden1',
- options={'nit': 12, 'jac_options': {'alpha': 1}})
- assert_(nonlin.norm(res.x) < 1e-9)
- assert_(nonlin.norm(res.fun) < 1e-9)
- def test_root_broyden2(self):
- res = root(F, F.xin, method='broyden2',
- options={'nit': 12, 'jac_options': {'alpha': 1}})
- assert_(nonlin.norm(res.x) < 1e-9)
- assert_(nonlin.norm(res.fun) < 1e-9)
- def test_root_anderson(self):
- res = root(F, F.xin, method='anderson',
- options={'nit': 12,
- 'jac_options': {'alpha': 0.03, 'M': 5}})
- assert_(nonlin.norm(res.x) < 0.33)
- def test_root_linearmixing(self):
- res = root(F, F.xin, method='linearmixing',
- options={'nit': 60,
- 'jac_options': {'alpha': 0.5}})
- assert_(nonlin.norm(res.x) < 1e-7)
- assert_(nonlin.norm(res.fun) < 1e-7)
- def test_root_excitingmixing(self):
- res = root(F, F.xin, method='excitingmixing',
- options={'nit': 20,
- 'jac_options': {'alpha': 0.5}})
- assert_(nonlin.norm(res.x) < 1e-5)
- assert_(nonlin.norm(res.fun) < 1e-5)
- def test_root_diagbroyden(self):
- res = root(F, F.xin, method='diagbroyden',
- options={'nit': 11,
- 'jac_options': {'alpha': 1}})
- assert_(nonlin.norm(res.x) < 1e-8)
- assert_(nonlin.norm(res.fun) < 1e-8)
|