123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- # Code adapted from "upfirdn" python library with permission:
- #
- # Copyright (c) 2009, Motorola, Inc
- #
- # All Rights Reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are
- # met:
- #
- # * Redistributions of source code must retain the above copyright notice,
- # this list of conditions and the following disclaimer.
- #
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- #
- # * Neither the name of Motorola nor the names of its contributors may be
- # used to endorse or promote products derived from this software without
- # specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
- # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- import numpy as np
- from itertools import product
- from numpy.testing import assert_equal, assert_allclose
- from pytest import raises as assert_raises
- from scipy.signal import upfirdn, firwin, lfilter
- from scipy.signal._upfirdn import _output_len
- def upfirdn_naive(x, h, up=1, down=1):
- """Naive upfirdn processing in Python
- Note: arg order (x, h) differs to facilitate apply_along_axis use.
- """
- h = np.asarray(h)
- out = np.zeros(len(x) * up, x.dtype)
- out[::up] = x
- out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)]
- return out
- class UpFIRDnCase(object):
- """Test _UpFIRDn object"""
- def __init__(self, up, down, h, x_dtype):
- self.up = up
- self.down = down
- self.h = np.atleast_1d(h)
- self.x_dtype = x_dtype
- self.rng = np.random.RandomState(17)
- def __call__(self):
- # tiny signal
- self.scrub(np.ones(1, self.x_dtype))
- # ones
- self.scrub(np.ones(10, self.x_dtype)) # ones
- # randn
- x = self.rng.randn(10).astype(self.x_dtype)
- if self.x_dtype in (np.complex64, np.complex128):
- x += 1j * self.rng.randn(10)
- self.scrub(x)
- # ramp
- self.scrub(np.arange(10).astype(self.x_dtype))
- # 3D, random
- size = (2, 3, 5)
- x = self.rng.randn(*size).astype(self.x_dtype)
- if self.x_dtype in (np.complex64, np.complex128):
- x += 1j * self.rng.randn(*size)
- for axis in range(len(size)):
- self.scrub(x, axis=axis)
- x = x[:, ::2, 1::3].T
- for axis in range(len(size)):
- self.scrub(x, axis=axis)
- def scrub(self, x, axis=-1):
- yr = np.apply_along_axis(upfirdn_naive, axis, x,
- self.h, self.up, self.down)
- y = upfirdn(self.h, x, self.up, self.down, axis=axis)
- dtypes = (self.h.dtype, x.dtype)
- if all(d == np.complex64 for d in dtypes):
- assert_equal(y.dtype, np.complex64)
- elif np.complex64 in dtypes and np.float32 in dtypes:
- assert_equal(y.dtype, np.complex64)
- elif all(d == np.float32 for d in dtypes):
- assert_equal(y.dtype, np.float32)
- elif np.complex128 in dtypes or np.complex64 in dtypes:
- assert_equal(y.dtype, np.complex128)
- else:
- assert_equal(y.dtype, np.float64)
- assert_allclose(yr, y)
- class TestUpfirdn(object):
- def test_valid_input(self):
- assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1
- assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1
- assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1)
- def test_vs_lfilter(self):
- # Check that up=1.0 gives same answer as lfilter + slicing
- random_state = np.random.RandomState(17)
- try_types = (int, np.float32, np.complex64, float, complex)
- size = 10000
- down_factors = [2, 11, 79]
- for dtype in try_types:
- x = random_state.randn(size).astype(dtype)
- if dtype in (np.complex64, np.complex128):
- x += 1j * random_state.randn(size)
- for down in down_factors:
- h = firwin(31, 1. / down, window='hamming')
- yl = lfilter(h, 1.0, x)[::down]
- y = upfirdn(h, x, up=1, down=down)
- assert_allclose(yl, y[:yl.size], atol=1e-7, rtol=1e-7)
- def test_vs_naive(self):
- tests = []
- try_types = (int, np.float32, np.complex64, float, complex)
- # Simple combinations of factors
- for x_dtype, h in product(try_types, (1., 1j)):
- tests.append(UpFIRDnCase(1, 1, h, x_dtype))
- tests.append(UpFIRDnCase(2, 2, h, x_dtype))
- tests.append(UpFIRDnCase(3, 2, h, x_dtype))
- tests.append(UpFIRDnCase(2, 3, h, x_dtype))
- # mixture of big, small, and both directions (net up and net down)
- # use all combinations of data and filter dtypes
- factors = (100, 10) # up/down factors
- cases = product(factors, factors, try_types, try_types)
- for case in cases:
- tests += self._random_factors(*case)
- for test in tests:
- test()
- def _random_factors(self, p_max, q_max, h_dtype, x_dtype):
- n_rep = 3
- longest_h = 25
- random_state = np.random.RandomState(17)
- tests = []
- for _ in range(n_rep):
- # Randomize the up/down factors somewhat
- p_add = q_max if p_max > q_max else 1
- q_add = p_max if q_max > p_max else 1
- p = random_state.randint(p_max) + p_add
- q = random_state.randint(q_max) + q_add
- # Generate random FIR coefficients
- len_h = random_state.randint(longest_h) + 1
- h = np.atleast_1d(random_state.randint(len_h))
- h = h.astype(h_dtype)
- if h_dtype == complex:
- h += 1j * random_state.randint(len_h)
- tests.append(UpFIRDnCase(p, q, h, x_dtype))
- return tests
|