123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- """Compressed Sparse Column matrix format"""
- from __future__ import division, print_function, absolute_import
- __docformat__ = "restructuredtext en"
- __all__ = ['csc_matrix', 'isspmatrix_csc']
- import numpy as np
- from .base import spmatrix
- from ._sparsetools import csc_tocsr
- from . import _sparsetools
- from .sputils import upcast, isintlike, IndexMixin, get_index_dtype
- from .compressed import _cs_matrix
- class csc_matrix(_cs_matrix, IndexMixin):
- """
- Compressed Sparse Column matrix
- This can be instantiated in several ways:
- csc_matrix(D)
- with a dense matrix or rank-2 ndarray D
- csc_matrix(S)
- with another sparse matrix S (equivalent to S.tocsc())
- csc_matrix((M, N), [dtype])
- to construct an empty matrix with shape (M, N)
- dtype is optional, defaulting to dtype='d'.
- csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
- where ``data``, ``row_ind`` and ``col_ind`` satisfy the
- relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
- csc_matrix((data, indices, indptr), [shape=(M, N)])
- is the standard CSC representation where the row indices for
- column i are stored in ``indices[indptr[i]:indptr[i+1]]``
- and their corresponding values are stored in
- ``data[indptr[i]:indptr[i+1]]``. If the shape parameter is
- not supplied, the matrix dimensions are inferred from
- the index arrays.
- Attributes
- ----------
- dtype : dtype
- Data type of the matrix
- shape : 2-tuple
- Shape of the matrix
- ndim : int
- Number of dimensions (this is always 2)
- nnz
- Number of stored values, including explicit zeros
- data
- Data array of the matrix
- indices
- CSC format index array
- indptr
- CSC format index pointer array
- has_sorted_indices
- Whether indices are sorted
- Notes
- -----
- Sparse matrices can be used in arithmetic operations: they support
- addition, subtraction, multiplication, division, and matrix power.
- Advantages of the CSC format
- - efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- - efficient column slicing
- - fast matrix vector products (CSR, BSR may be faster)
- Disadvantages of the CSC format
- - slow row slicing operations (consider CSR)
- - changes to the sparsity structure are expensive (consider LIL or DOK)
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.sparse import csc_matrix
- >>> csc_matrix((3, 4), dtype=np.int8).toarray()
- array([[0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0]], dtype=int8)
- >>> row = np.array([0, 2, 2, 0, 1, 2])
- >>> col = np.array([0, 0, 1, 2, 2, 2])
- >>> data = np.array([1, 2, 3, 4, 5, 6])
- >>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
- array([[1, 0, 4],
- [0, 0, 5],
- [2, 3, 6]])
- >>> indptr = np.array([0, 2, 3, 6])
- >>> indices = np.array([0, 2, 2, 0, 1, 2])
- >>> data = np.array([1, 2, 3, 4, 5, 6])
- >>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
- array([[1, 0, 4],
- [0, 0, 5],
- [2, 3, 6]])
- """
- format = 'csc'
- def transpose(self, axes=None, copy=False):
- if axes is not None:
- raise ValueError(("Sparse matrices do not support "
- "an 'axes' parameter because swapping "
- "dimensions is the only logical permutation."))
- M, N = self.shape
- from .csr import csr_matrix
- return csr_matrix((self.data, self.indices,
- self.indptr), (N, M), copy=copy)
- transpose.__doc__ = spmatrix.transpose.__doc__
- def __iter__(self):
- for r in self.tocsr():
- yield r
- def tocsc(self, copy=False):
- if copy:
- return self.copy()
- else:
- return self
- tocsc.__doc__ = spmatrix.tocsc.__doc__
- def tocsr(self, copy=False):
- M,N = self.shape
- idx_dtype = get_index_dtype((self.indptr, self.indices),
- maxval=max(self.nnz, N))
- indptr = np.empty(M + 1, dtype=idx_dtype)
- indices = np.empty(self.nnz, dtype=idx_dtype)
- data = np.empty(self.nnz, dtype=upcast(self.dtype))
- csc_tocsr(M, N,
- self.indptr.astype(idx_dtype),
- self.indices.astype(idx_dtype),
- self.data,
- indptr,
- indices,
- data)
- from .csr import csr_matrix
- A = csr_matrix((data, indices, indptr), shape=self.shape, copy=False)
- A.has_sorted_indices = True
- return A
- tocsr.__doc__ = spmatrix.tocsr.__doc__
- def __getitem__(self, key):
- # Use CSR to implement fancy indexing.
- row, col = self._unpack_index(key)
- # Things that return submatrices. row or col is a int or slice.
- if (isinstance(row, slice) or isinstance(col, slice) or
- isintlike(row) or isintlike(col)):
- return self.T[col, row].T
- # Things that return a sequence of values.
- else:
- return self.T[col, row]
- def nonzero(self):
- # CSC can't use _cs_matrix's .nonzero method because it
- # returns the indices sorted for self transposed.
- # Get row and col indices, from _cs_matrix.tocoo
- major_dim, minor_dim = self._swap(self.shape)
- minor_indices = self.indices
- major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype)
- _sparsetools.expandptr(major_dim, self.indptr, major_indices)
- row, col = self._swap((major_indices, minor_indices))
- # Remove explicit zeros
- nz_mask = self.data != 0
- row = row[nz_mask]
- col = col[nz_mask]
- # Sort them to be in C-style order
- ind = np.argsort(row, kind='mergesort')
- row = row[ind]
- col = col[ind]
- return row, col
- nonzero.__doc__ = _cs_matrix.nonzero.__doc__
- def getrow(self, i):
- """Returns a copy of row i of the matrix, as a (1 x n)
- CSR matrix (row vector).
- """
- # we convert to CSR to maintain compatibility with old impl.
- # in spmatrix.getrow()
- return self._get_submatrix(i, slice(None)).tocsr()
- def getcol(self, i):
- """Returns a copy of column i of the matrix, as a (m x 1)
- CSC matrix (column vector).
- """
- M, N = self.shape
- i = int(i)
- if i < 0:
- i += N
- if i < 0 or i >= N:
- raise IndexError('index (%d) out of range' % i)
- idx = slice(*self.indptr[i:i+2])
- data = self.data[idx].copy()
- indices = self.indices[idx].copy()
- indptr = np.array([0, len(indices)], dtype=self.indptr.dtype)
- return csc_matrix((data, indices, indptr), shape=(M, 1),
- dtype=self.dtype, copy=False)
- # these functions are used by the parent class (_cs_matrix)
- # to remove redudancy between csc_matrix and csr_matrix
- def _swap(self, x):
- """swap the members of x if this is a column-oriented matrix
- """
- return x[1], x[0]
- def isspmatrix_csc(x):
- """Is x of csc_matrix type?
- Parameters
- ----------
- x
- object to check for being a csc matrix
- Returns
- -------
- bool
- True if x is a csc matrix, False otherwise
- Examples
- --------
- >>> from scipy.sparse import csc_matrix, isspmatrix_csc
- >>> isspmatrix_csc(csc_matrix([[5]]))
- True
- >>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
- >>> isspmatrix_csc(csr_matrix([[5]]))
- False
- """
- return isinstance(x, csc_matrix)
|