123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- from __future__ import division, print_function, absolute_import
- import numpy as np
- from numpy.testing import assert_equal
- from scipy.sparse.csgraph import (reverse_cuthill_mckee,
- maximum_bipartite_matching, structural_rank)
- from scipy.sparse import diags, csc_matrix, csr_matrix, coo_matrix
- def test_graph_reverse_cuthill_mckee():
- A = np.array([[1, 0, 0, 0, 1, 0, 0, 0],
- [0, 1, 1, 0, 0, 1, 0, 1],
- [0, 1, 1, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 1, 0],
- [1, 0, 1, 0, 1, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 1],
- [0, 0, 0, 1, 0, 0, 1, 0],
- [0, 1, 0, 0, 0, 1, 0, 1]], dtype=int)
-
- graph = csr_matrix(A)
- perm = reverse_cuthill_mckee(graph)
- correct_perm = np.array([6, 3, 7, 5, 1, 2, 4, 0])
- assert_equal(perm, correct_perm)
-
- # Test int64 indices input
- graph.indices = graph.indices.astype('int64')
- graph.indptr = graph.indptr.astype('int64')
- perm = reverse_cuthill_mckee(graph, True)
- assert_equal(perm, correct_perm)
- def test_graph_reverse_cuthill_mckee_ordering():
- data = np.ones(63,dtype=int)
- rows = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2,
- 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,
- 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9,
- 9, 10, 10, 10, 10, 10, 11, 11, 11, 11,
- 12, 12, 12, 13, 13, 13, 13, 14, 14, 14,
- 14, 15, 15, 15, 15, 15])
- cols = np.array([0, 2, 5, 8, 10, 1, 3, 9, 11, 0, 2,
- 7, 10, 1, 3, 11, 4, 6, 12, 14, 0, 7, 13,
- 15, 4, 6, 14, 2, 5, 7, 15, 0, 8, 10, 13,
- 1, 9, 11, 0, 2, 8, 10, 15, 1, 3, 9, 11,
- 4, 12, 14, 5, 8, 13, 15, 4, 6, 12, 14,
- 5, 7, 10, 13, 15])
- graph = coo_matrix((data, (rows,cols))).tocsr()
- perm = reverse_cuthill_mckee(graph)
- correct_perm = np.array([12, 14, 4, 6, 10, 8, 2, 15,
- 0, 13, 7, 5, 9, 11, 1, 3])
- assert_equal(perm, correct_perm)
- def test_graph_maximum_bipartite_matching():
- A = diags(np.ones(25), offsets=0, format='csc')
- rand_perm = np.random.permutation(25)
- rand_perm2 = np.random.permutation(25)
- Rrow = np.arange(25)
- Rcol = rand_perm
- Rdata = np.ones(25,dtype=int)
- Rmat = coo_matrix((Rdata,(Rrow,Rcol))).tocsc()
- Crow = rand_perm2
- Ccol = np.arange(25)
- Cdata = np.ones(25,dtype=int)
- Cmat = coo_matrix((Cdata,(Crow,Ccol))).tocsc()
- # Randomly permute identity matrix
- B = Rmat*A*Cmat
-
- # Row permute
- perm = maximum_bipartite_matching(B,perm_type='row')
- Rrow = np.arange(25)
- Rcol = perm
- Rdata = np.ones(25,dtype=int)
- Rmat = coo_matrix((Rdata,(Rrow,Rcol))).tocsc()
- C1 = Rmat*B
-
- # Column permute
- perm2 = maximum_bipartite_matching(B,perm_type='column')
- Crow = perm2
- Ccol = np.arange(25)
- Cdata = np.ones(25,dtype=int)
- Cmat = coo_matrix((Cdata,(Crow,Ccol))).tocsc()
- C2 = B*Cmat
-
- # Should get identity matrix back
- assert_equal(any(C1.diagonal() == 0), False)
- assert_equal(any(C2.diagonal() == 0), False)
-
- # Test int64 indices input
- B.indices = B.indices.astype('int64')
- B.indptr = B.indptr.astype('int64')
- perm = maximum_bipartite_matching(B,perm_type='row')
- Rrow = np.arange(25)
- Rcol = perm
- Rdata = np.ones(25,dtype=int)
- Rmat = coo_matrix((Rdata,(Rrow,Rcol))).tocsc()
- C3 = Rmat*B
- assert_equal(any(C3.diagonal() == 0), False)
- def test_graph_structural_rank():
- # Test square matrix #1
- A = csc_matrix([[1, 1, 0],
- [1, 0, 1],
- [0, 1, 0]])
- assert_equal(structural_rank(A), 3)
-
- # Test square matrix #2
- rows = np.array([0,0,0,0,0,1,1,2,2,3,3,3,3,3,3,4,4,5,5,6,6,7,7])
- cols = np.array([0,1,2,3,4,2,5,2,6,0,1,3,5,6,7,4,5,5,6,2,6,2,4])
- data = np.ones_like(rows)
- B = coo_matrix((data,(rows,cols)), shape=(8,8))
- assert_equal(structural_rank(B), 6)
-
- #Test non-square matrix
- C = csc_matrix([[1, 0, 2, 0],
- [2, 0, 4, 0]])
- assert_equal(structural_rank(C), 2)
-
- #Test tall matrix
- assert_equal(structural_rank(C.T), 2)
|