123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- """ Functions that operate on sparse matrices
- """
- from __future__ import division, print_function, absolute_import
- __all__ = ['count_blocks','estimate_blocksize']
- from .csr import isspmatrix_csr, csr_matrix
- from .csc import isspmatrix_csc
- from ._sparsetools import csr_count_blocks
- def extract_diagonal(A):
- raise NotImplementedError('use .diagonal() instead')
- #def extract_diagonal(A):
- # """extract_diagonal(A) returns the main diagonal of A."""
- # #TODO extract k-th diagonal
- # if isspmatrix_csr(A) or isspmatrix_csc(A):
- # fn = getattr(sparsetools, A.format + "_diagonal")
- # y = empty( min(A.shape), dtype=upcast(A.dtype) )
- # fn(A.shape[0],A.shape[1],A.indptr,A.indices,A.data,y)
- # return y
- # elif isspmatrix_bsr(A):
- # M,N = A.shape
- # R,C = A.blocksize
- # y = empty( min(M,N), dtype=upcast(A.dtype) )
- # fn = sparsetools.bsr_diagonal(M//R, N//C, R, C, \
- # A.indptr, A.indices, ravel(A.data), y)
- # return y
- # else:
- # return extract_diagonal(csr_matrix(A))
- def estimate_blocksize(A,efficiency=0.7):
- """Attempt to determine the blocksize of a sparse matrix
- Returns a blocksize=(r,c) such that
- - A.nnz / A.tobsr( (r,c) ).nnz > efficiency
- """
- if not (isspmatrix_csr(A) or isspmatrix_csc(A)):
- A = csr_matrix(A)
- if A.nnz == 0:
- return (1,1)
- if not 0 < efficiency < 1.0:
- raise ValueError('efficiency must satisfy 0.0 < efficiency < 1.0')
- high_efficiency = (1.0 + efficiency) / 2.0
- nnz = float(A.nnz)
- M,N = A.shape
- if M % 2 == 0 and N % 2 == 0:
- e22 = nnz / (4 * count_blocks(A,(2,2)))
- else:
- e22 = 0.0
- if M % 3 == 0 and N % 3 == 0:
- e33 = nnz / (9 * count_blocks(A,(3,3)))
- else:
- e33 = 0.0
- if e22 > high_efficiency and e33 > high_efficiency:
- e66 = nnz / (36 * count_blocks(A,(6,6)))
- if e66 > efficiency:
- return (6,6)
- else:
- return (3,3)
- else:
- if M % 4 == 0 and N % 4 == 0:
- e44 = nnz / (16 * count_blocks(A,(4,4)))
- else:
- e44 = 0.0
- if e44 > efficiency:
- return (4,4)
- elif e33 > efficiency:
- return (3,3)
- elif e22 > efficiency:
- return (2,2)
- else:
- return (1,1)
- def count_blocks(A,blocksize):
- """For a given blocksize=(r,c) count the number of occupied
- blocks in a sparse matrix A
- """
- r,c = blocksize
- if r < 1 or c < 1:
- raise ValueError('r and c must be positive')
- if isspmatrix_csr(A):
- M,N = A.shape
- return csr_count_blocks(M,N,r,c,A.indptr,A.indices)
- elif isspmatrix_csc(A):
- return count_blocks(A.T,(c,r))
- else:
- return count_blocks(csr_matrix(A),blocksize)
|