123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008 |
- from __future__ import division, print_function, absolute_import
- import os
- import copy
- import pytest
- import numpy as np
- from numpy.testing import (assert_equal, assert_almost_equal,
- assert_, assert_allclose, assert_array_equal)
- import pytest
- from pytest import raises as assert_raises
- from scipy._lib.six import xrange
- import scipy.spatial.qhull as qhull
- from scipy.spatial import cKDTree as KDTree
- from scipy.spatial import Voronoi
- import itertools
- def sorted_tuple(x):
- return tuple(sorted(x))
- def sorted_unique_tuple(x):
- return tuple(np.unique(x))
- def assert_unordered_tuple_list_equal(a, b, tpl=tuple):
- if isinstance(a, np.ndarray):
- a = a.tolist()
- if isinstance(b, np.ndarray):
- b = b.tolist()
- a = list(map(tpl, a))
- a.sort()
- b = list(map(tpl, b))
- b.sort()
- assert_equal(a, b)
- np.random.seed(1234)
- points = [(0,0), (0,1), (1,0), (1,1), (0.5, 0.5), (0.5, 1.5)]
- pathological_data_1 = np.array([
- [-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79],
- [-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36],
- [-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57],
- [-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57],
- [-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79],
- [-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14],
- [-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57],
- [-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79],
- [-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14],
- [0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0],
- [0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14],
- [0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79],
- [0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57],
- [1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14],
- [1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79],
- [1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57],
- [2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57],
- [2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36],
- [3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79],
- [3.14,1.57], [3.14,2.36], [3.14,3.14],
- ])
- pathological_data_2 = np.array([
- [-1, -1], [-1, 0], [-1, 1],
- [0, -1], [0, 0], [0, 1],
- [1, -1 - np.finfo(np.float_).eps], [1, 0], [1, 1],
- ])
- bug_2850_chunks = [np.random.rand(10, 2),
- np.array([[0,0], [0,1], [1,0], [1,1]]) # add corners
- ]
- # same with some additional chunks
- bug_2850_chunks_2 = (bug_2850_chunks +
- [np.random.rand(10, 2),
- 0.25 + np.array([[0,0], [0,1], [1,0], [1,1]])])
- DATASETS = {
- 'some-points': np.asarray(points),
- 'random-2d': np.random.rand(30, 2),
- 'random-3d': np.random.rand(30, 3),
- 'random-4d': np.random.rand(30, 4),
- 'random-5d': np.random.rand(30, 5),
- 'random-6d': np.random.rand(10, 6),
- 'random-7d': np.random.rand(10, 7),
- 'random-8d': np.random.rand(10, 8),
- 'pathological-1': pathological_data_1,
- 'pathological-2': pathological_data_2
- }
- INCREMENTAL_DATASETS = {
- 'bug-2850': (bug_2850_chunks, None),
- 'bug-2850-2': (bug_2850_chunks_2, None),
- }
- def _add_inc_data(name, chunksize):
- """
- Generate incremental datasets from basic data sets
- """
- points = DATASETS[name]
- ndim = points.shape[1]
- opts = None
- nmin = ndim + 2
- if name == 'some-points':
- # since Qz is not allowed, use QJ
- opts = 'QJ Pp'
- elif name == 'pathological-1':
- # include enough points so that we get different x-coordinates
- nmin = 12
- chunks = [points[:nmin]]
- for j in xrange(nmin, len(points), chunksize):
- chunks.append(points[j:j+chunksize])
- new_name = "%s-chunk-%d" % (name, chunksize)
- assert new_name not in INCREMENTAL_DATASETS
- INCREMENTAL_DATASETS[new_name] = (chunks, opts)
- for name in DATASETS:
- for chunksize in 1, 4, 16:
- _add_inc_data(name, chunksize)
- class Test_Qhull(object):
- def test_swapping(self):
- # Check that Qhull state swapping works
- x = qhull._Qhull(b'v',
- np.array([[0,0],[0,1],[1,0],[1,1.],[0.5,0.5]]),
- b'Qz')
- xd = copy.deepcopy(x.get_voronoi_diagram())
- y = qhull._Qhull(b'v',
- np.array([[0,0],[0,1],[1,0],[1,2.]]),
- b'Qz')
- yd = copy.deepcopy(y.get_voronoi_diagram())
- xd2 = copy.deepcopy(x.get_voronoi_diagram())
- x.close()
- yd2 = copy.deepcopy(y.get_voronoi_diagram())
- y.close()
- assert_raises(RuntimeError, x.get_voronoi_diagram)
- assert_raises(RuntimeError, y.get_voronoi_diagram)
- assert_allclose(xd[0], xd2[0])
- assert_unordered_tuple_list_equal(xd[1], xd2[1], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(xd[2], xd2[2], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(xd[3], xd2[3], tpl=sorted_tuple)
- assert_array_equal(xd[4], xd2[4])
- assert_allclose(yd[0], yd2[0])
- assert_unordered_tuple_list_equal(yd[1], yd2[1], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(yd[2], yd2[2], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(yd[3], yd2[3], tpl=sorted_tuple)
- assert_array_equal(yd[4], yd2[4])
- x.close()
- assert_raises(RuntimeError, x.get_voronoi_diagram)
- y.close()
- assert_raises(RuntimeError, y.get_voronoi_diagram)
- def test_issue_8051(self):
- points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],[2, 0], [2, 1], [2, 2]])
- Voronoi(points)
- class TestUtilities(object):
- """
- Check that utility functions work.
- """
- def test_find_simplex(self):
- # Simple check that simplex finding works
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- # +---+
- # |\ 0|
- # | \ |
- # |1 \|
- # +---+
- assert_equal(tri.vertices, [[1, 3, 2], [3, 1, 0]])
- for p in [(0.25, 0.25, 1),
- (0.75, 0.75, 0),
- (0.3, 0.2, 1)]:
- i = tri.find_simplex(p[:2])
- assert_equal(i, p[2], err_msg='%r' % (p,))
- j = qhull.tsearch(tri, p[:2])
- assert_equal(i, j)
- def test_plane_distance(self):
- # Compare plane distance from hyperplane equations obtained from Qhull
- # to manually computed plane equations
- x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
- (0.99440079, 0.45182168)], dtype=np.double)
- p = np.array([0.99966555, 0.15685619], dtype=np.double)
- tri = qhull.Delaunay(x)
- z = tri.lift_points(x)
- pz = tri.lift_points(p)
- dist = tri.plane_distance(p)
- for j, v in enumerate(tri.vertices):
- x1 = z[v[0]]
- x2 = z[v[1]]
- x3 = z[v[2]]
- n = np.cross(x1 - x3, x2 - x3)
- n /= np.sqrt(np.dot(n, n))
- n *= -np.sign(n[2])
- d = np.dot(n, pz - x3)
- assert_almost_equal(dist[j], d)
- def test_convex_hull(self):
- # Simple check that the convex hull seems to works
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- # +---+
- # |\ 0|
- # | \ |
- # |1 \|
- # +---+
- assert_equal(tri.convex_hull, [[3, 2], [1, 2], [1, 0], [3, 0]])
- def test_volume_area(self):
- #Basic check that we get back the correct volume and area for a cube
- points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
- (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
- hull = qhull.ConvexHull(points)
- assert_allclose(hull.volume, 1., rtol=1e-14,
- err_msg="Volume of cube is incorrect")
- assert_allclose(hull.area, 6., rtol=1e-14,
- err_msg="Area of cube is incorrect")
- def test_random_volume_area(self):
- #Test that the results for a random 10-point convex are
- #coherent with the output of qconvex Qt s FA
- points = np.array([(0.362568364506, 0.472712355305, 0.347003084477),
- (0.733731893414, 0.634480295684, 0.950513180209),
- (0.511239955611, 0.876839441267, 0.418047827863),
- (0.0765906233393, 0.527373281342, 0.6509863541),
- (0.146694972056, 0.596725793348, 0.894860986685),
- (0.513808585741, 0.069576205858, 0.530890338876),
- (0.512343805118, 0.663537132612, 0.037689295973),
- (0.47282965018, 0.462176697655, 0.14061843691),
- (0.240584597123, 0.778660020591, 0.722913476339),
- (0.951271745935, 0.967000673944, 0.890661319684)])
- hull = qhull.ConvexHull(points)
- assert_allclose(hull.volume, 0.14562013, rtol=1e-07,
- err_msg="Volume of random polyhedron is incorrect")
- assert_allclose(hull.area, 1.6670425, rtol=1e-07,
- err_msg="Area of random polyhedron is incorrect")
- def test_incremental_volume_area_random_input(self):
- """Test that incremental mode gives the same volume/area as
- non-incremental mode and incremental mode with restart"""
- nr_points = 20
- dim = 3
- points = np.random.random((nr_points, dim))
- inc_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
- inc_restart_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
- for i in range(dim+1, nr_points):
- hull = qhull.ConvexHull(points[:i+1, :])
- inc_hull.add_points(points[i:i+1, :])
- inc_restart_hull.add_points(points[i:i+1, :], restart=True)
- assert_allclose(hull.volume, inc_hull.volume, rtol=1e-7)
- assert_allclose(hull.volume, inc_restart_hull.volume, rtol=1e-7)
- assert_allclose(hull.area, inc_hull.area, rtol=1e-7)
- assert_allclose(hull.area, inc_restart_hull.area, rtol=1e-7)
- def _check_barycentric_transforms(self, tri, err_msg="",
- unit_cube=False,
- unit_cube_tol=0):
- """Check that a triangulation has reasonable barycentric transforms"""
- vertices = tri.points[tri.vertices]
- sc = 1/(tri.ndim + 1.0)
- centroids = vertices.sum(axis=1) * sc
- # Either: (i) the simplex has a `nan` barycentric transform,
- # or, (ii) the centroid is in the simplex
- def barycentric_transform(tr, x):
- ndim = tr.shape[1]
- r = tr[:,-1,:]
- Tinv = tr[:,:-1,:]
- return np.einsum('ijk,ik->ij', Tinv, x - r)
- eps = np.finfo(float).eps
- c = barycentric_transform(tri.transform, centroids)
- olderr = np.seterr(invalid="ignore")
- try:
- ok = np.isnan(c).all(axis=1) | (abs(c - sc)/sc < 0.1).all(axis=1)
- finally:
- np.seterr(**olderr)
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- # Invalid simplices must be (nearly) zero volume
- q = vertices[:,:-1,:] - vertices[:,-1,None,:]
- volume = np.array([np.linalg.det(q[k,:,:])
- for k in range(tri.nsimplex)])
- ok = np.isfinite(tri.transform[:,0,0]) | (volume < np.sqrt(eps))
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- # Also, find_simplex for the centroid should end up in some
- # simplex for the non-degenerate cases
- j = tri.find_simplex(centroids)
- ok = (j != -1) | np.isnan(tri.transform[:,0,0])
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- if unit_cube:
- # If in unit cube, no interior point should be marked out of hull
- at_boundary = (centroids <= unit_cube_tol).any(axis=1)
- at_boundary |= (centroids >= 1 - unit_cube_tol).any(axis=1)
- ok = (j != -1) | at_boundary
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- def test_degenerate_barycentric_transforms(self):
- # The triangulation should not produce invalid barycentric
- # transforms that stump the simplex finding
- data = np.load(os.path.join(os.path.dirname(__file__), 'data',
- 'degenerate_pointset.npz'))
- points = data['c']
- data.close()
- tri = qhull.Delaunay(points)
- # Check that there are not too many invalid simplices
- bad_count = np.isnan(tri.transform[:,0,0]).sum()
- assert_(bad_count < 21, bad_count)
- # Check the transforms
- self._check_barycentric_transforms(tri)
- @pytest.mark.slow
- def test_more_barycentric_transforms(self):
- # Triangulate some "nasty" grids
- eps = np.finfo(float).eps
- npoints = {2: 70, 3: 11, 4: 5, 5: 3}
- _is_32bit_platform = np.intp(0).itemsize < 8
- for ndim in xrange(2, 6):
- # Generate an uniform grid in n-d unit cube
- x = np.linspace(0, 1, npoints[ndim])
- grid = np.c_[list(map(np.ravel, np.broadcast_arrays(*np.ix_(*([x]*ndim)))))].T
- err_msg = "ndim=%d" % ndim
- # Check using regular grid
- tri = qhull.Delaunay(grid)
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True)
- # Check with eps-perturbations
- np.random.seed(1234)
- m = (np.random.rand(grid.shape[0]) < 0.2)
- grid[m,:] += 2*eps*(np.random.rand(*grid[m,:].shape) - 0.5)
- tri = qhull.Delaunay(grid)
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True,
- unit_cube_tol=2*eps)
- # Check with duplicated data
- tri = qhull.Delaunay(np.r_[grid, grid])
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True,
- unit_cube_tol=2*eps)
- if not _is_32bit_platform:
- # test numerically unstable, and reported to fail on 32-bit
- # installs
- # Check with larger perturbations
- np.random.seed(4321)
- m = (np.random.rand(grid.shape[0]) < 0.2)
- grid[m,:] += 1000*eps*(np.random.rand(*grid[m,:].shape) - 0.5)
- tri = qhull.Delaunay(grid)
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True,
- unit_cube_tol=1500*eps)
- # Check with yet larger perturbations
- np.random.seed(4321)
- m = (np.random.rand(grid.shape[0]) < 0.2)
- grid[m,:] += 1e6*eps*(np.random.rand(*grid[m,:].shape) - 0.5)
- tri = qhull.Delaunay(grid)
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True,
- unit_cube_tol=1e7*eps)
- class TestVertexNeighborVertices(object):
- def _check(self, tri):
- expected = [set() for j in range(tri.points.shape[0])]
- for s in tri.simplices:
- for a in s:
- for b in s:
- if a != b:
- expected[a].add(b)
- indptr, indices = tri.vertex_neighbor_vertices
- got = []
- for j in range(tri.points.shape[0]):
- got.append(set(map(int, indices[indptr[j]:indptr[j+1]])))
- assert_equal(got, expected, err_msg="%r != %r" % (got, expected))
- def test_triangle(self):
- points = np.array([(0,0), (0,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- self._check(tri)
- def test_rectangle(self):
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- self._check(tri)
- def test_complicated(self):
- points = np.array([(0,0), (0,1), (1,1), (1,0),
- (0.5, 0.5), (0.9, 0.5)], dtype=np.double)
- tri = qhull.Delaunay(points)
- self._check(tri)
- class TestDelaunay(object):
- """
- Check that triangulation works.
- """
- def test_masked_array_fails(self):
- masked_array = np.ma.masked_all(1)
- assert_raises(ValueError, qhull.Delaunay, masked_array)
- def test_array_with_nans_fails(self):
- points_with_nan = np.array([(0,0), (0,1), (1,1), (1,np.nan)], dtype=np.double)
- assert_raises(ValueError, qhull.Delaunay, points_with_nan)
- def test_nd_simplex(self):
- # simple smoke test: triangulate a n-dimensional simplex
- for nd in xrange(2, 8):
- points = np.zeros((nd+1, nd))
- for j in xrange(nd):
- points[j,j] = 1.0
- points[-1,:] = 1.0
- tri = qhull.Delaunay(points)
- tri.vertices.sort()
- assert_equal(tri.vertices, np.arange(nd+1, dtype=int)[None,:])
- assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:])
- def test_2d_square(self):
- # simple smoke test: 2d square
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- assert_equal(tri.vertices, [[1, 3, 2], [3, 1, 0]])
- assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]])
- def test_duplicate_points(self):
- x = np.array([0, 1, 0, 1], dtype=np.float64)
- y = np.array([0, 0, 1, 1], dtype=np.float64)
- xp = np.r_[x, x]
- yp = np.r_[y, y]
- # shouldn't fail on duplicate points
- tri = qhull.Delaunay(np.c_[x, y])
- tri2 = qhull.Delaunay(np.c_[xp, yp])
- def test_pathological(self):
- # both should succeed
- points = DATASETS['pathological-1']
- tri = qhull.Delaunay(points)
- assert_equal(tri.points[tri.vertices].max(), points.max())
- assert_equal(tri.points[tri.vertices].min(), points.min())
- points = DATASETS['pathological-2']
- tri = qhull.Delaunay(points)
- assert_equal(tri.points[tri.vertices].max(), points.max())
- assert_equal(tri.points[tri.vertices].min(), points.min())
- def test_joggle(self):
- # Check that the option QJ indeed guarantees that all input points
- # occur as vertices of the triangulation
- points = np.random.rand(10, 2)
- points = np.r_[points, points] # duplicate input data
- tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp")
- assert_array_equal(np.unique(tri.simplices.ravel()),
- np.arange(len(points)))
- def test_coplanar(self):
- # Check that the coplanar point output option indeed works
- points = np.random.rand(10, 2)
- points = np.r_[points, points] # duplicate input data
- tri = qhull.Delaunay(points)
- assert_(len(np.unique(tri.simplices.ravel())) == len(points)//2)
- assert_(len(tri.coplanar) == len(points)//2)
- assert_(len(np.unique(tri.coplanar[:,2])) == len(points)//2)
- assert_(np.all(tri.vertex_to_simplex >= 0))
- def test_furthest_site(self):
- points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
- tri = qhull.Delaunay(points, furthest_site=True)
- expected = np.array([(1, 4, 0), (4, 2, 0)]) # from Qhull
- assert_array_equal(tri.simplices, expected)
- @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
- def test_incremental(self, name):
- # Test incremental construction of the triangulation
- chunks, opts = INCREMENTAL_DATASETS[name]
- points = np.concatenate(chunks, axis=0)
- obj = qhull.Delaunay(chunks[0], incremental=True,
- qhull_options=opts)
- for chunk in chunks[1:]:
- obj.add_points(chunk)
- obj2 = qhull.Delaunay(points)
- obj3 = qhull.Delaunay(chunks[0], incremental=True,
- qhull_options=opts)
- if len(chunks) > 1:
- obj3.add_points(np.concatenate(chunks[1:], axis=0),
- restart=True)
- # Check that the incremental mode agrees with upfront mode
- if name.startswith('pathological'):
- # XXX: These produce valid but different triangulations.
- # They look OK when plotted, but how to check them?
- assert_array_equal(np.unique(obj.simplices.ravel()),
- np.arange(points.shape[0]))
- assert_array_equal(np.unique(obj2.simplices.ravel()),
- np.arange(points.shape[0]))
- else:
- assert_unordered_tuple_list_equal(obj.simplices, obj2.simplices,
- tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(obj2.simplices, obj3.simplices,
- tpl=sorted_tuple)
- def assert_hulls_equal(points, facets_1, facets_2):
- # Check that two convex hulls constructed from the same point set
- # are equal
- facets_1 = set(map(sorted_tuple, facets_1))
- facets_2 = set(map(sorted_tuple, facets_2))
- if facets_1 != facets_2 and points.shape[1] == 2:
- # The direct check fails for the pathological cases
- # --- then the convex hull from Delaunay differs (due
- # to rounding error etc.) from the hull computed
- # otherwise, by the question whether (tricoplanar)
- # points that lie almost exactly on the hull are
- # included as vertices of the hull or not.
- #
- # So we check the result, and accept it if the Delaunay
- # hull line segments are a subset of the usual hull.
- eps = 1000 * np.finfo(float).eps
- for a, b in facets_1:
- for ap, bp in facets_2:
- t = points[bp] - points[ap]
- t /= np.linalg.norm(t) # tangent
- n = np.array([-t[1], t[0]]) # normal
- # check that the two line segments are parallel
- # to the same line
- c1 = np.dot(n, points[b] - points[ap])
- c2 = np.dot(n, points[a] - points[ap])
- if not np.allclose(np.dot(c1, n), 0):
- continue
- if not np.allclose(np.dot(c2, n), 0):
- continue
- # Check that the segment (a, b) is contained in (ap, bp)
- c1 = np.dot(t, points[a] - points[ap])
- c2 = np.dot(t, points[b] - points[ap])
- c3 = np.dot(t, points[bp] - points[ap])
- if c1 < -eps or c1 > c3 + eps:
- continue
- if c2 < -eps or c2 > c3 + eps:
- continue
- # OK:
- break
- else:
- raise AssertionError("comparison fails")
- # it was OK
- return
- assert_equal(facets_1, facets_2)
- class TestConvexHull:
- def test_masked_array_fails(self):
- masked_array = np.ma.masked_all(1)
- assert_raises(ValueError, qhull.ConvexHull, masked_array)
- def test_array_with_nans_fails(self):
- points_with_nan = np.array([(0,0), (1,1), (2,np.nan)], dtype=np.double)
- assert_raises(ValueError, qhull.ConvexHull, points_with_nan)
- @pytest.mark.parametrize("name", sorted(DATASETS))
- def test_hull_consistency_tri(self, name):
- # Check that a convex hull returned by qhull in ndim
- # and the hull constructed from ndim delaunay agree
- points = DATASETS[name]
- tri = qhull.Delaunay(points)
- hull = qhull.ConvexHull(points)
- assert_hulls_equal(points, tri.convex_hull, hull.simplices)
- # Check that the hull extremes are as expected
- if points.shape[1] == 2:
- assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
- else:
- assert_equal(np.unique(hull.simplices), hull.vertices)
- @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
- def test_incremental(self, name):
- # Test incremental construction of the convex hull
- chunks, _ = INCREMENTAL_DATASETS[name]
- points = np.concatenate(chunks, axis=0)
- obj = qhull.ConvexHull(chunks[0], incremental=True)
- for chunk in chunks[1:]:
- obj.add_points(chunk)
- obj2 = qhull.ConvexHull(points)
- obj3 = qhull.ConvexHull(chunks[0], incremental=True)
- if len(chunks) > 1:
- obj3.add_points(np.concatenate(chunks[1:], axis=0),
- restart=True)
- # Check that the incremental mode agrees with upfront mode
- assert_hulls_equal(points, obj.simplices, obj2.simplices)
- assert_hulls_equal(points, obj.simplices, obj3.simplices)
- def test_vertices_2d(self):
- # The vertices should be in counterclockwise order in 2-D
- np.random.seed(1234)
- points = np.random.rand(30, 2)
- hull = qhull.ConvexHull(points)
- assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
- # Check counterclockwiseness
- x, y = hull.points[hull.vertices].T
- angle = np.arctan2(y - y.mean(), x - x.mean())
- assert_(np.all(np.diff(np.unwrap(angle)) > 0))
- def test_volume_area(self):
- # Basic check that we get back the correct volume and area for a cube
- points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
- (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
- tri = qhull.ConvexHull(points)
- assert_allclose(tri.volume, 1., rtol=1e-14)
- assert_allclose(tri.area, 6., rtol=1e-14)
- class TestVoronoi:
- def test_masked_array_fails(self):
- masked_array = np.ma.masked_all(1)
- assert_raises(ValueError, qhull.Voronoi, masked_array)
- def test_simple(self):
- # Simple case with known Voronoi diagram
- points = [(0, 0), (0, 1), (0, 2),
- (1, 0), (1, 1), (1, 2),
- (2, 0), (2, 1), (2, 2)]
- # qhull v o Fv Qbb Qc Qz < dat
- output = """
- 2
- 5 10 1
- -10.101 -10.101
- 0.5 0.5
- 1.5 0.5
- 0.5 1.5
- 1.5 1.5
- 2 0 1
- 3 3 0 1
- 2 0 3
- 3 2 0 1
- 4 4 3 1 2
- 3 4 0 3
- 2 0 2
- 3 4 0 2
- 2 0 4
- 0
- 12
- 4 0 3 0 1
- 4 0 1 0 1
- 4 1 4 1 3
- 4 1 2 0 3
- 4 2 5 0 3
- 4 3 4 1 2
- 4 3 6 0 2
- 4 4 5 3 4
- 4 4 7 2 4
- 4 5 8 0 4
- 4 6 7 0 2
- 4 7 8 0 4
- """
- self._compare_qvoronoi(points, output)
- def _compare_qvoronoi(self, points, output, **kw):
- """Compare to output from 'qvoronoi o Fv < data' to Voronoi()"""
- # Parse output
- output = [list(map(float, x.split())) for x in output.strip().splitlines()]
- nvertex = int(output[1][0])
- vertices = list(map(tuple, output[3:2+nvertex])) # exclude inf
- nregion = int(output[1][1])
- regions = [[int(y)-1 for y in x[1:]]
- for x in output[2+nvertex:2+nvertex+nregion]]
- nridge = int(output[2+nvertex+nregion][0])
- ridge_points = [[int(y) for y in x[1:3]]
- for x in output[3+nvertex+nregion:]]
- ridge_vertices = [[int(y)-1 for y in x[3:]]
- for x in output[3+nvertex+nregion:]]
- # Compare results
- vor = qhull.Voronoi(points, **kw)
- def sorttuple(x):
- return tuple(sorted(x))
- assert_allclose(vor.vertices, vertices)
- assert_equal(set(map(tuple, vor.regions)),
- set(map(tuple, regions)))
- p1 = list(zip(list(map(sorttuple, ridge_points)), list(map(sorttuple, ridge_vertices))))
- p2 = list(zip(list(map(sorttuple, vor.ridge_points.tolist())),
- list(map(sorttuple, vor.ridge_vertices))))
- p1.sort()
- p2.sort()
- assert_equal(p1, p2)
- @pytest.mark.parametrize("name", sorted(DATASETS))
- def test_ridges(self, name):
- # Check that the ridges computed by Voronoi indeed separate
- # the regions of nearest neighborhood, by comparing the result
- # to KDTree.
- points = DATASETS[name]
- tree = KDTree(points)
- vor = qhull.Voronoi(points)
- for p, v in vor.ridge_dict.items():
- # consider only finite ridges
- if not np.all(np.asarray(v) >= 0):
- continue
- ridge_midpoint = vor.vertices[v].mean(axis=0)
- d = 1e-6 * (points[p[0]] - ridge_midpoint)
- dist, k = tree.query(ridge_midpoint + d, k=1)
- assert_equal(k, p[0])
- dist, k = tree.query(ridge_midpoint - d, k=1)
- assert_equal(k, p[1])
- def test_furthest_site(self):
- points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
- # qhull v o Fv Qbb Qc Qu < dat
- output = """
- 2
- 3 5 1
- -10.101 -10.101
- 0.6000000000000001 0.5
- 0.5 0.6000000000000001
- 3 0 1 2
- 2 0 1
- 2 0 2
- 0
- 3 0 1 2
- 5
- 4 0 2 0 2
- 4 0 1 0 1
- 4 0 4 1 2
- 4 1 4 0 1
- 4 2 4 0 2
- """
- self._compare_qvoronoi(points, output, furthest_site=True)
- @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
- def test_incremental(self, name):
- # Test incremental construction of the triangulation
- if INCREMENTAL_DATASETS[name][0][0].shape[1] > 3:
- # too slow (testing of the result --- qhull is still fast)
- return
- chunks, opts = INCREMENTAL_DATASETS[name]
- points = np.concatenate(chunks, axis=0)
- obj = qhull.Voronoi(chunks[0], incremental=True,
- qhull_options=opts)
- for chunk in chunks[1:]:
- obj.add_points(chunk)
- obj2 = qhull.Voronoi(points)
- obj3 = qhull.Voronoi(chunks[0], incremental=True,
- qhull_options=opts)
- if len(chunks) > 1:
- obj3.add_points(np.concatenate(chunks[1:], axis=0),
- restart=True)
- # -- Check that the incremental mode agrees with upfront mode
- assert_equal(len(obj.point_region), len(obj2.point_region))
- assert_equal(len(obj.point_region), len(obj3.point_region))
- # The vertices may be in different order or duplicated in
- # the incremental map
- for objx in obj, obj3:
- vertex_map = {-1: -1}
- for i, v in enumerate(objx.vertices):
- for j, v2 in enumerate(obj2.vertices):
- if np.allclose(v, v2):
- vertex_map[i] = j
- def remap(x):
- if hasattr(x, '__len__'):
- return tuple(set([remap(y) for y in x]))
- try:
- return vertex_map[x]
- except KeyError:
- raise AssertionError("incremental result has spurious vertex at %r"
- % (objx.vertices[x],))
- def simplified(x):
- items = set(map(sorted_tuple, x))
- if () in items:
- items.remove(())
- items = [x for x in items if len(x) > 1]
- items.sort()
- return items
- assert_equal(
- simplified(remap(objx.regions)),
- simplified(obj2.regions)
- )
- assert_equal(
- simplified(remap(objx.ridge_vertices)),
- simplified(obj2.ridge_vertices)
- )
- # XXX: compare ridge_points --- not clear exactly how to do this
- class Test_HalfspaceIntersection(object):
- def assert_unordered_allclose(self, arr1, arr2, rtol=1e-7):
- """Check that every line in arr1 is only once in arr2"""
- assert_equal(arr1.shape, arr2.shape)
- truths = np.zeros((arr1.shape[0],), dtype=bool)
- for l1 in arr1:
- indexes = np.nonzero((abs(arr2 - l1) < rtol).all(axis=1))[0]
- assert_equal(indexes.shape, (1,))
- truths[indexes[0]] = True
- assert_(truths.all())
- def test_cube_halfspace_intersection(self):
- halfspaces = np.array([[-1.0, 0.0, 0.0],
- [0.0, -1.0, 0.0],
- [1.0, 0.0, -1.0],
- [0.0, 1.0, -1.0]])
- feasible_point = np.array([0.5, 0.5])
- points = np.array([[0.0, 1.0], [1.0, 1.0], [0.0, 0.0], [1.0, 0.0]])
- hull = qhull.HalfspaceIntersection(halfspaces, feasible_point)
- assert_allclose(points, hull.intersections)
- def test_self_dual_polytope_intersection(self):
- fname = os.path.join(os.path.dirname(__file__), 'data',
- 'selfdual-4d-polytope.txt')
- ineqs = np.genfromtxt(fname)
- halfspaces = -np.hstack((ineqs[:, 1:], ineqs[:, :1]))
- feas_point = np.array([0., 0., 0., 0.])
- hs = qhull.HalfspaceIntersection(halfspaces, feas_point)
- assert_equal(hs.intersections.shape, (24, 4))
- assert_almost_equal(hs.dual_volume, 32.0)
- assert_equal(len(hs.dual_facets), 24)
- for facet in hs.dual_facets:
- assert_equal(len(facet), 6)
- dists = halfspaces[:, -1] + halfspaces[:, :-1].dot(feas_point)
- self.assert_unordered_allclose((halfspaces[:, :-1].T/dists).T, hs.dual_points)
- points = itertools.permutations([0., 0., 0.5, -0.5])
- for point in points:
- assert_equal(np.sum((hs.intersections == point).all(axis=1)), 1)
- def test_wrong_feasible_point(self):
- halfspaces = np.array([[-1.0, 0.0, 0.0],
- [0.0, -1.0, 0.0],
- [1.0, 0.0, -1.0],
- [0.0, 1.0, -1.0]])
- feasible_point = np.array([0.5, 0.5, 0.5])
- #Feasible point is (ndim,) instead of (ndim-1,)
- assert_raises(ValueError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- feasible_point = np.array([[0.5], [0.5]])
- #Feasible point is (ndim-1, 1) instead of (ndim-1,)
- assert_raises(ValueError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- feasible_point = np.array([[0.5, 0.5]])
- #Feasible point is (1, ndim-1) instead of (ndim-1,)
- assert_raises(ValueError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- feasible_point = np.array([-0.5, -0.5])
- #Feasible point is outside feasible region
- assert_raises(qhull.QhullError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- def test_incremental(self):
- #Cube
- halfspaces = np.array([[0., 0., -1., -0.5],
- [0., -1., 0., -0.5],
- [-1., 0., 0., -0.5],
- [1., 0., 0., -0.5],
- [0., 1., 0., -0.5],
- [0., 0., 1., -0.5]])
- #Cut each summit
- extra_normals = np.array([[1., 1., 1.],
- [1., 1., -1.],
- [1., -1., 1.],
- [1, -1., -1.]])
- offsets = np.array([[-1.]]*8)
- extra_halfspaces = np.hstack((np.vstack((extra_normals, -extra_normals)),
- offsets))
- feas_point = np.array([0., 0., 0.])
- inc_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True)
- inc_res_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True)
- for i, ehs in enumerate(extra_halfspaces):
- inc_hs.add_halfspaces(ehs[np.newaxis, :])
- inc_res_hs.add_halfspaces(ehs[np.newaxis, :], restart=True)
- total = np.vstack((halfspaces, extra_halfspaces[:i+1, :]))
- hs = qhull.HalfspaceIntersection(total, feas_point)
- assert_allclose(inc_hs.halfspaces, inc_res_hs.halfspaces)
- assert_allclose(inc_hs.halfspaces, hs.halfspaces)
- #Direct computation and restart should have points in same order
- assert_allclose(hs.intersections, inc_res_hs.intersections)
- #Incremental will have points in different order than direct computation
- self.assert_unordered_allclose(inc_hs.intersections, hs.intersections)
- inc_hs.close()
|