123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945 |
- from __future__ import division, print_function, absolute_import
- import pytest
- import numpy as np
- from numpy.testing import assert_equal, assert_array_almost_equal
- from numpy.testing import assert_allclose
- from scipy.spatial.transform import Rotation, Slerp
- from scipy.stats import special_ortho_group
- from itertools import permutations
- def test_generic_quat_matrix():
- x = np.array([[3, 4, 0, 0], [5, 12, 0, 0]])
- r = Rotation.from_quat(x)
- expected_quat = x / np.array([[5], [13]])
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_from_single_1d_quaternion():
- x = np.array([3, 4, 0, 0])
- r = Rotation.from_quat(x)
- expected_quat = x / 5
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_from_single_2d_quaternion():
- x = np.array([[3, 4, 0, 0]])
- r = Rotation.from_quat(x)
- expected_quat = x / 5
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_from_square_quat_matrix():
- # Ensure proper norm array broadcasting
- x = np.array([
- [3, 0, 0, 4],
- [5, 0, 12, 0],
- [0, 0, 0, 1],
- [0, 0, 0, -1]
- ])
- r = Rotation.from_quat(x)
- expected_quat = x / np.array([[5], [13], [1], [1]])
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_malformed_1d_from_quat():
- with pytest.raises(ValueError):
- Rotation.from_quat(np.array([1, 2, 3]))
- def test_malformed_2d_from_quat():
- with pytest.raises(ValueError):
- Rotation.from_quat(np.array([
- [1, 2, 3, 4, 5],
- [4, 5, 6, 7, 8]
- ]))
- def test_zero_norms_from_quat():
- x = np.array([
- [3, 4, 0, 0],
- [0, 0, 0, 0],
- [5, 0, 12, 0]
- ])
- with pytest.raises(ValueError):
- Rotation.from_quat(x)
- def test_as_dcm_single_1d_quaternion():
- quat = [0, 0, 0, 1]
- mat = Rotation.from_quat(quat).as_dcm()
- # mat.shape == (3,3) due to 1d input
- assert_array_almost_equal(mat, np.eye(3))
- def test_as_dcm_single_2d_quaternion():
- quat = [[0, 0, 1, 1]]
- mat = Rotation.from_quat(quat).as_dcm()
- assert_equal(mat.shape, (1, 3, 3))
- expected_mat = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- assert_array_almost_equal(mat[0], expected_mat)
- def test_as_dcm_from_square_input():
- quats = [
- [0, 0, 1, 1],
- [0, 1, 0, 1],
- [0, 0, 0, 1],
- [0, 0, 0, -1]
- ]
- mat = Rotation.from_quat(quats).as_dcm()
- assert_equal(mat.shape, (4, 3, 3))
- expected0 = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- assert_array_almost_equal(mat[0], expected0)
- expected1 = np.array([
- [0, 0, 1],
- [0, 1, 0],
- [-1, 0, 0]
- ])
- assert_array_almost_equal(mat[1], expected1)
- assert_array_almost_equal(mat[2], np.eye(3))
- assert_array_almost_equal(mat[3], np.eye(3))
- def test_as_dcm_from_generic_input():
- quats = [
- [0, 0, 1, 1],
- [0, 1, 0, 1],
- [1, 2, 3, 4]
- ]
- mat = Rotation.from_quat(quats).as_dcm()
- assert_equal(mat.shape, (3, 3, 3))
- expected0 = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- assert_array_almost_equal(mat[0], expected0)
- expected1 = np.array([
- [0, 0, 1],
- [0, 1, 0],
- [-1, 0, 0]
- ])
- assert_array_almost_equal(mat[1], expected1)
- expected2 = np.array([
- [0.4, -2, 2.2],
- [2.8, 1, 0.4],
- [-1, 2, 2]
- ]) / 3
- assert_array_almost_equal(mat[2], expected2)
- def test_from_single_2d_dcm():
- dcm = [
- [0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]
- ]
- expected_quat = [0.5, 0.5, 0.5, 0.5]
- assert_array_almost_equal(
- Rotation.from_dcm(dcm).as_quat(),
- expected_quat)
- def test_from_single_3d_dcm():
- dcm = np.array([
- [0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]
- ]).reshape((1, 3, 3))
- expected_quat = np.array([0.5, 0.5, 0.5, 0.5]).reshape((1, 4))
- assert_array_almost_equal(
- Rotation.from_dcm(dcm).as_quat(),
- expected_quat)
- def test_from_dcm_calculation():
- expected_quat = np.array([1, 1, 6, 1]) / np.sqrt(39)
- dcm = np.array([
- [-0.8974359, -0.2564103, 0.3589744],
- [0.3589744, -0.8974359, 0.2564103],
- [0.2564103, 0.3589744, 0.8974359]
- ])
- assert_array_almost_equal(
- Rotation.from_dcm(dcm).as_quat(),
- expected_quat)
- assert_array_almost_equal(
- Rotation.from_dcm(dcm.reshape((1, 3, 3))).as_quat(),
- expected_quat.reshape((1, 4)))
- def test_dcm_calculation_pipeline():
- dcm = special_ortho_group.rvs(3, size=10, random_state=0)
- assert_array_almost_equal(Rotation.from_dcm(dcm).as_dcm(), dcm)
- def test_from_dcm_ortho_output():
- np.random.seed(0)
- dcm = np.random.random((100, 3, 3))
- ortho_dcm = Rotation.from_dcm(dcm).as_dcm()
- mult_result = np.einsum('...ij,...jk->...ik', ortho_dcm,
- ortho_dcm.transpose((0, 2, 1)))
- eye3d = np.zeros((100, 3, 3))
- for i in range(3):
- eye3d[:, i, i] = 1.0
- assert_array_almost_equal(mult_result, eye3d)
- def test_from_1d_single_rotvec():
- rotvec = [1, 0, 0]
- expected_quat = np.array([0.4794255, 0, 0, 0.8775826])
- result = Rotation.from_rotvec(rotvec)
- assert_array_almost_equal(result.as_quat(), expected_quat)
- def test_from_2d_single_rotvec():
- rotvec = [[1, 0, 0]]
- expected_quat = np.array([[0.4794255, 0, 0, 0.8775826]])
- result = Rotation.from_rotvec(rotvec)
- assert_array_almost_equal(result.as_quat(), expected_quat)
- def test_from_generic_rotvec():
- rotvec = [
- [1, 2, 2],
- [1, -1, 0.5],
- [0, 0, 0]
- ]
- expected_quat = np.array([
- [0.3324983, 0.6649967, 0.6649967, 0.0707372],
- [0.4544258, -0.4544258, 0.2272129, 0.7316889],
- [0, 0, 0, 1]
- ])
- assert_array_almost_equal(
- Rotation.from_rotvec(rotvec).as_quat(),
- expected_quat)
- def test_from_rotvec_small_angle():
- rotvec = np.array([
- [5e-4 / np.sqrt(3), -5e-4 / np.sqrt(3), 5e-4 / np.sqrt(3)],
- [0.2, 0.3, 0.4],
- [0, 0, 0]
- ])
- quat = Rotation.from_rotvec(rotvec).as_quat()
- # cos(theta/2) ~~ 1 for small theta
- assert_allclose(quat[0, 3], 1)
- # sin(theta/2) / theta ~~ 0.5 for small theta
- assert_allclose(quat[0, :3], rotvec[0] * 0.5)
- assert_allclose(quat[1, 3], 0.9639685)
- assert_allclose(
- quat[1, :3],
- np.array([
- 0.09879603932153465,
- 0.14819405898230198,
- 0.19759207864306931
- ]))
- assert_equal(quat[2], np.array([0, 0, 0, 1]))
- def test_malformed_1d_from_rotvec():
- with pytest.raises(ValueError, match='Expected `rot_vec` to have shape'):
- Rotation.from_rotvec([1, 2])
- def test_malformed_2d_from_rotvec():
- with pytest.raises(ValueError, match='Expected `rot_vec` to have shape'):
- Rotation.from_rotvec([
- [1, 2, 3, 4],
- [5, 6, 7, 8]
- ])
- def test_as_generic_rotvec():
- quat = np.array([
- [1, 2, -1, 0.5],
- [1, -1, 1, 0.0003],
- [0, 0, 0, 1]
- ])
- quat /= np.linalg.norm(quat, axis=1)[:, None]
- rotvec = Rotation.from_quat(quat).as_rotvec()
- angle = np.linalg.norm(rotvec, axis=1)
- assert_allclose(quat[:, 3], np.cos(angle/2))
- assert_allclose(np.cross(rotvec, quat[:, :3]), np.zeros((3, 3)))
- def test_as_rotvec_single_1d_input():
- quat = np.array([1, 2, -3, 2])
- expected_rotvec = np.array([0.5772381, 1.1544763, -1.7317144])
- actual_rotvec = Rotation.from_quat(quat).as_rotvec()
- assert_equal(actual_rotvec.shape, (3,))
- assert_allclose(actual_rotvec, expected_rotvec)
- def test_as_rotvec_single_2d_input():
- quat = np.array([[1, 2, -3, 2]])
- expected_rotvec = np.array([[0.5772381, 1.1544763, -1.7317144]])
- actual_rotvec = Rotation.from_quat(quat).as_rotvec()
- assert_equal(actual_rotvec.shape, (1, 3))
- assert_allclose(actual_rotvec, expected_rotvec)
- def test_rotvec_calc_pipeline():
- # Include small angles
- rotvec = np.array([
- [0, 0, 0],
- [1, -1, 2],
- [-3e-4, 3.5e-4, 7.5e-5]
- ])
- assert_allclose(Rotation.from_rotvec(rotvec).as_rotvec(), rotvec)
- def test_from_euler_single_rotation():
- quat = Rotation.from_euler('z', 90, degrees=True).as_quat()
- expected_quat = np.array([0, 0, 1, 1]) / np.sqrt(2)
- assert_allclose(quat, expected_quat)
- def test_single_intrinsic_extrinsic_rotation():
- extrinsic = Rotation.from_euler('z', 90, degrees=True).as_dcm()
- intrinsic = Rotation.from_euler('Z', 90, degrees=True).as_dcm()
- assert_allclose(extrinsic, intrinsic)
- def test_from_euler_rotation_order():
- # Intrinsic rotation is same as extrinsic with order reversed
- np.random.seed(0)
- a = np.random.randint(low=0, high=180, size=(6, 3))
- b = a[:, ::-1]
- x = Rotation.from_euler('xyz', a, degrees=True).as_quat()
- y = Rotation.from_euler('ZYX', b, degrees=True).as_quat()
- assert_allclose(x, y)
- def test_from_euler_elementary_extrinsic_rotation():
- # Simple test to check if extrinsic rotations are implemented correctly
- dcm = Rotation.from_euler('zx', [90, 90], degrees=True).as_dcm()
- expected_dcm = np.array([
- [0, -1, 0],
- [0, 0, -1],
- [1, 0, 0]
- ])
- assert_array_almost_equal(dcm, expected_dcm)
- def test_from_euler_intrinsic_rotation_312():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- dcm = Rotation.from_euler('ZXY', angles, degrees=True).as_dcm()
- assert_array_almost_equal(dcm[0], np.array([
- [0.3061862, -0.2500000, 0.9185587],
- [0.8838835, 0.4330127, -0.1767767],
- [-0.3535534, 0.8660254, 0.3535534]
- ]))
- assert_array_almost_equal(dcm[1], np.array([
- [0.5334936, -0.2500000, 0.8080127],
- [0.8080127, 0.4330127, -0.3995191],
- [-0.2500000, 0.8660254, 0.4330127]
- ]))
- assert_array_almost_equal(dcm[2], np.array([
- [0.0473672, -0.6123725, 0.7891491],
- [0.6597396, 0.6123725, 0.4355958],
- [-0.7500000, 0.5000000, 0.4330127]
- ]))
- def test_from_euler_intrinsic_rotation_313():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- dcm = Rotation.from_euler('ZXZ', angles, degrees=True).as_dcm()
- assert_array_almost_equal(dcm[0], np.array([
- [0.43559574, -0.78914913, 0.4330127],
- [0.65973961, -0.04736717, -0.750000],
- [0.61237244, 0.61237244, 0.500000]
- ]))
- assert_array_almost_equal(dcm[1], np.array([
- [0.6250000, -0.64951905, 0.4330127],
- [0.64951905, 0.1250000, -0.750000],
- [0.4330127, 0.750000, 0.500000]
- ]))
- assert_array_almost_equal(dcm[2], np.array([
- [-0.1767767, -0.91855865, 0.35355339],
- [0.88388348, -0.30618622, -0.35355339],
- [0.4330127, 0.25000000, 0.8660254]
- ]))
- def test_from_euler_extrinsic_rotation_312():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- dcm = Rotation.from_euler('zxy', angles, degrees=True).as_dcm()
- assert_array_almost_equal(dcm[0], np.array([
- [0.91855865, 0.1767767, 0.35355339],
- [0.25000000, 0.4330127, -0.8660254],
- [-0.30618622, 0.88388348, 0.35355339]
- ]))
- assert_array_almost_equal(dcm[1], np.array([
- [0.96650635, -0.0580127, 0.2500000],
- [0.25000000, 0.4330127, -0.8660254],
- [-0.0580127, 0.89951905, 0.4330127]
- ]))
- assert_array_almost_equal(dcm[2], np.array([
- [0.65973961, -0.04736717, 0.7500000],
- [0.61237244, 0.61237244, -0.5000000],
- [-0.43559574, 0.78914913, 0.4330127]
- ]))
- def test_from_euler_extrinsic_rotation_313():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- dcm = Rotation.from_euler('zxz', angles, degrees=True).as_dcm()
- assert_array_almost_equal(dcm[0], np.array([
- [0.43559574, -0.65973961, 0.61237244],
- [0.78914913, -0.04736717, -0.61237244],
- [0.4330127, 0.75000000, 0.500000]
- ]))
- assert_array_almost_equal(dcm[1], np.array([
- [0.62500000, -0.64951905, 0.4330127],
- [0.64951905, 0.12500000, -0.750000],
- [0.4330127, 0.75000000, 0.500000]
- ]))
- assert_array_almost_equal(dcm[2], np.array([
- [-0.1767767, -0.88388348, 0.4330127],
- [0.91855865, -0.30618622, -0.250000],
- [0.35355339, 0.35355339, 0.8660254]
- ]))
- def test_as_euler_asymmetric_axes():
- np.random.seed(0)
- n = 10
- angles = np.empty((n, 3))
- angles[:, 0] = np.random.uniform(low=-np.pi, high=np.pi, size=(n,))
- angles[:, 1] = np.random.uniform(low=-np.pi / 2, high=np.pi / 2, size=(n,))
- angles[:, 2] = np.random.uniform(low=-np.pi, high=np.pi, size=(n,))
- for seq_tuple in permutations('xyz'):
- # Extrinsic rotations
- seq = ''.join(seq_tuple)
- assert_allclose(angles, Rotation.from_euler(seq, angles).as_euler(seq))
- # Intrinsic rotations
- seq = seq.upper()
- assert_allclose(angles, Rotation.from_euler(seq, angles).as_euler(seq))
- def test_as_euler_symmetric_axes():
- np.random.seed(0)
- n = 10
- angles = np.empty((n, 3))
- angles[:, 0] = np.random.uniform(low=-np.pi, high=np.pi, size=(n,))
- angles[:, 1] = np.random.uniform(low=0, high=np.pi, size=(n,))
- angles[:, 2] = np.random.uniform(low=-np.pi, high=np.pi, size=(n,))
- for axis1 in ['x', 'y', 'z']:
- for axis2 in ['x', 'y', 'z']:
- if axis1 == axis2:
- continue
- # Extrinsic rotations
- seq = axis1 + axis2 + axis1
- assert_allclose(
- angles, Rotation.from_euler(seq, angles).as_euler(seq))
- # Intrinsic rotations
- seq = seq.upper()
- assert_allclose(
- angles, Rotation.from_euler(seq, angles).as_euler(seq))
- def test_as_euler_degenerate_asymmetric_axes():
- # Since we cannot check for angle equality, we check for dcm equality
- angles = np.array([
- [45, 90, 35],
- [35, -90, 20],
- [35, 90, 25],
- [25, -90, 15]
- ])
- with pytest.warns(UserWarning, match="Gimbal lock"):
- for seq_tuple in permutations('xyz'):
- # Extrinsic rotations
- seq = ''.join(seq_tuple)
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- dcm_expected = rotation.as_dcm()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- dcm_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_dcm()
- assert_array_almost_equal(dcm_expected, dcm_estimated)
- # Intrinsic rotations
- seq = seq.upper()
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- dcm_expected = rotation.as_dcm()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- dcm_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_dcm()
- assert_array_almost_equal(dcm_expected, dcm_estimated)
- def test_as_euler_degenerate_symmetric_axes():
- # Since we cannot check for angle equality, we check for dcm equality
- angles = np.array([
- [15, 0, 60],
- [35, 0, 75],
- [60, 180, 35],
- [15, -180, 25],
- ])
- with pytest.warns(UserWarning, match="Gimbal lock"):
- for axis1 in ['x', 'y', 'z']:
- for axis2 in ['x', 'y', 'z']:
- if axis1 == axis2:
- continue
- # Extrinsic rotations
- seq = axis1 + axis2 + axis1
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- dcm_expected = rotation.as_dcm()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- dcm_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_dcm()
- assert_array_almost_equal(dcm_expected, dcm_estimated)
- # Intrinsic rotations
- seq = seq.upper()
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- dcm_expected = rotation.as_dcm()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- dcm_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_dcm()
- assert_array_almost_equal(dcm_expected, dcm_estimated)
- def test_inv():
- np.random.seed(0)
- n = 10
- p = Rotation.from_quat(np.random.normal(size=(n, 4)))
- q = p.inv()
- p_dcm = p.as_dcm()
- q_dcm = q.as_dcm()
- result1 = np.einsum('...ij,...jk->...ik', p_dcm, q_dcm)
- result2 = np.einsum('...ij,...jk->...ik', q_dcm, p_dcm)
- eye3d = np.empty((n, 3, 3))
- eye3d[:] = np.eye(3)
- assert_array_almost_equal(result1, eye3d)
- assert_array_almost_equal(result2, eye3d)
- def test_inv_single_rotation():
- np.random.seed(0)
- p = Rotation.from_quat(np.random.normal(size=(4,)))
- q = p.inv()
- p_dcm = p.as_dcm()
- q_dcm = q.as_dcm()
- res1 = np.dot(p_dcm, q_dcm)
- res2 = np.dot(q_dcm, p_dcm)
- eye = np.eye(3)
- assert_array_almost_equal(res1, eye)
- assert_array_almost_equal(res2, eye)
- x = Rotation.from_quat(np.random.normal(size=(1, 4)))
- y = x.inv()
- x_dcm = x.as_dcm()
- y_dcm = y.as_dcm()
- result1 = np.einsum('...ij,...jk->...ik', x_dcm, y_dcm)
- result2 = np.einsum('...ij,...jk->...ik', y_dcm, x_dcm)
- eye3d = np.empty((1, 3, 3))
- eye3d[:] = np.eye(3)
- assert_array_almost_equal(result1, eye3d)
- assert_array_almost_equal(result2, eye3d)
- def test_apply_single_rotation_single_point():
- dcm = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- r_1d = Rotation.from_dcm(dcm)
- r_2d = Rotation.from_dcm(np.expand_dims(dcm, axis=0))
- v_1d = np.array([1, 2, 3])
- v_2d = np.expand_dims(v_1d, axis=0)
- v1d_rotated = np.array([-2, 1, 3])
- v2d_rotated = np.expand_dims(v1d_rotated, axis=0)
- assert_allclose(r_1d.apply(v_1d), v1d_rotated)
- assert_allclose(r_1d.apply(v_2d), v2d_rotated)
- assert_allclose(r_2d.apply(v_1d), v2d_rotated)
- assert_allclose(r_2d.apply(v_2d), v2d_rotated)
- v1d_inverse = np.array([2, -1, 3])
- v2d_inverse = np.expand_dims(v1d_inverse, axis=0)
- assert_allclose(r_1d.apply(v_1d, inverse=True), v1d_inverse)
- assert_allclose(r_1d.apply(v_2d, inverse=True), v2d_inverse)
- assert_allclose(r_2d.apply(v_1d, inverse=True), v2d_inverse)
- assert_allclose(r_2d.apply(v_2d, inverse=True), v2d_inverse)
- def test_apply_single_rotation_multiple_points():
- dcm = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- r1 = Rotation.from_dcm(dcm)
- r2 = Rotation.from_dcm(np.expand_dims(dcm, axis=0))
- v = np.array([[1, 2, 3], [4, 5, 6]])
- v_rotated = np.array([[-2, 1, 3], [-5, 4, 6]])
- assert_allclose(r1.apply(v), v_rotated)
- assert_allclose(r2.apply(v), v_rotated)
- v_inverse = np.array([[2, -1, 3], [5, -4, 6]])
- assert_allclose(r1.apply(v, inverse=True), v_inverse)
- assert_allclose(r2.apply(v, inverse=True), v_inverse)
- def test_apply_multiple_rotations_single_point():
- dcm = np.empty((2, 3, 3))
- dcm[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- dcm[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_dcm(dcm)
- v1 = np.array([1, 2, 3])
- v2 = np.expand_dims(v1, axis=0)
- v_rotated = np.array([[-2, 1, 3], [1, -3, 2]])
- assert_allclose(r.apply(v1), v_rotated)
- assert_allclose(r.apply(v2), v_rotated)
- v_inverse = np.array([[2, -1, 3], [1, 3, -2]])
- assert_allclose(r.apply(v1, inverse=True), v_inverse)
- assert_allclose(r.apply(v2, inverse=True), v_inverse)
- def test_apply_multiple_rotations_multiple_points():
- dcm = np.empty((2, 3, 3))
- dcm[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- dcm[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_dcm(dcm)
- v = np.array([[1, 2, 3], [4, 5, 6]])
- v_rotated = np.array([[-2, 1, 3], [4, -6, 5]])
- assert_allclose(r.apply(v), v_rotated)
- v_inverse = np.array([[2, -1, 3], [4, 6, -5]])
- assert_allclose(r.apply(v, inverse=True), v_inverse)
- def test_getitem():
- dcm = np.empty((2, 3, 3))
- dcm[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- dcm[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_dcm(dcm)
- assert_allclose(r[0].as_dcm(), dcm[0])
- assert_allclose(r[1].as_dcm(), dcm[1])
- assert_allclose(r[:-1].as_dcm(), np.expand_dims(dcm[0], axis=0))
- def test_n_rotations():
- dcm = np.empty((2, 3, 3))
- dcm[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- dcm[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_dcm(dcm)
- assert_equal(len(r), 2)
- assert_equal(len(r[0]), 1)
- assert_equal(len(r[1]), 1)
- assert_equal(len(r[:-1]), 1)
- def test_quat_ownership():
- # Ensure that users cannot accidentally corrupt object
- quat = np.array([
- [1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0]
- ])
- r = Rotation.from_quat(quat, normalized=True)
- s = r[0:2]
- r._quat[0] = np.array([0, -1, 0, 0])
- assert_allclose(s._quat[0], np.array([1, 0, 0, 0]))
- def test_match_vectors_no_rotation():
- x = np.array([[1, 2, 3], [4, 5, 6]])
- y = x.copy()
- r, p = Rotation.match_vectors(x, y)
- assert_array_almost_equal(r.as_dcm(), np.eye(3))
- def test_match_vectors_no_noise():
- np.random.seed(0)
- c = Rotation.from_quat(np.random.normal(size=4))
- b = np.random.normal(size=(5, 3))
- a = c.apply(b)
- est, cov = Rotation.match_vectors(a, b)
- assert_allclose(c.as_quat(), est.as_quat())
- def test_match_vectors_noise():
- np.random.seed(0)
- n_vectors = 100
- rot = Rotation.from_euler('xyz', np.random.normal(size=3))
- vectors = np.random.normal(size=(n_vectors, 3))
- result = rot.apply(vectors)
- # The paper adds noise as indepedently distributed angular errors
- sigma = np.deg2rad(1)
- tolerance = 1.5 * sigma
- noise = Rotation.from_rotvec(
- np.random.normal(
- size=(n_vectors, 3),
- scale=sigma
- )
- )
- # Attitude errors must preserve norm. Hence apply individual random
- # rotations to each vector.
- noisy_result = noise.apply(result)
- est, cov = Rotation.match_vectors(noisy_result, vectors)
- # Use rotation compositions to find out closeness
- error_vector = (rot * est.inv()).as_rotvec()
- assert_allclose(error_vector[0], 0, atol=tolerance)
- assert_allclose(error_vector[1], 0, atol=tolerance)
- assert_allclose(error_vector[2], 0, atol=tolerance)
- # Check error bounds using covariance matrix
- cov *= sigma
- assert_allclose(cov[0, 0], 0, atol=tolerance)
- assert_allclose(cov[1, 1], 0, atol=tolerance)
- assert_allclose(cov[2, 2], 0, atol=tolerance)
- def test_random_rotation_shape():
- assert_equal(Rotation.random().as_quat().shape, (4,))
- assert_equal(Rotation.random(None).as_quat().shape, (4,))
- assert_equal(Rotation.random(1).as_quat().shape, (1, 4))
- assert_equal(Rotation.random(5).as_quat().shape, (5, 4))
- def test_slerp():
- np.random.seed(0)
- key_rots = Rotation.from_quat(np.random.uniform(size=(5, 4)))
- key_quats = key_rots.as_quat()
- key_times = [0, 1, 2, 3, 4]
- interpolator = Slerp(key_times, key_rots)
- times = [0, 0.5, 0.25, 1, 1.5, 2, 2.75, 3, 3.25, 3.60, 4]
- interp_rots = interpolator(times)
- interp_quats = interp_rots.as_quat()
- # Dot products are affected by sign of quaternions
- interp_quats[interp_quats[:, -1] < 0] *= -1
- # Checking for quaternion equality, perform same operation
- key_quats[key_quats[:, -1] < 0] *= -1
- # Equality at keyframes, including both endpoints
- assert_allclose(interp_quats[0], key_quats[0])
- assert_allclose(interp_quats[3], key_quats[1])
- assert_allclose(interp_quats[5], key_quats[2])
- assert_allclose(interp_quats[7], key_quats[3])
- assert_allclose(interp_quats[10], key_quats[4])
- # Constant angular velocity between keyframes. Check by equating
- # cos(theta) between quaternion pairs with equal time difference.
- cos_theta1 = np.sum(interp_quats[0] * interp_quats[2])
- cos_theta2 = np.sum(interp_quats[2] * interp_quats[1])
- assert_allclose(cos_theta1, cos_theta2)
- cos_theta4 = np.sum(interp_quats[3] * interp_quats[4])
- cos_theta5 = np.sum(interp_quats[4] * interp_quats[5])
- assert_allclose(cos_theta4, cos_theta5)
- # theta1: 0 -> 0.25, theta3 : 0.5 -> 1
- # Use double angle formula for double the time difference
- cos_theta3 = np.sum(interp_quats[1] * interp_quats[3])
- assert_allclose(cos_theta3, 2 * (cos_theta1**2) - 1)
- # Miscellaneous checks
- assert_equal(len(interp_rots), len(times))
- def test_slerp_single_rot():
- with pytest.raises(ValueError, match="at least 2 rotations"):
- r = Rotation.from_quat([1, 2, 3, 4])
- Slerp([1], r)
- def test_slerp_time_dim_mismatch():
- with pytest.raises(ValueError,
- match="times to be specified in a 1 dimensional array"):
- np.random.seed(0)
- r = Rotation.from_quat(np.random.uniform(size=(2, 4)))
- t = np.array([[1],
- [2]])
- Slerp(t, r)
- def test_slerp_num_rotations_mismatch():
- with pytest.raises(ValueError, match="number of rotations to be equal to "
- "number of timestamps"):
- np.random.seed(0)
- r = Rotation.from_quat(np.random.uniform(size=(5, 4)))
- t = np.arange(7)
- Slerp(t, r)
- def test_slerp_equal_times():
- with pytest.raises(ValueError, match="strictly increasing order"):
- np.random.seed(0)
- r = Rotation.from_quat(np.random.uniform(size=(5, 4)))
- t = [0, 1, 2, 2, 4]
- Slerp(t, r)
- def test_slerp_decreasing_times():
- with pytest.raises(ValueError, match="strictly increasing order"):
- np.random.seed(0)
- r = Rotation.from_quat(np.random.uniform(size=(5, 4)))
- t = [0, 1, 3, 2, 4]
- Slerp(t, r)
- def test_slerp_call_time_dim_mismatch():
- np.random.seed(0)
- r = Rotation.from_quat(np.random.uniform(size=(5, 4)))
- t = np.arange(5)
- s = Slerp(t, r)
- with pytest.raises(ValueError,
- match="times to be specified in a 1 dimensional array"):
- interp_times = np.array([[3.5],
- [4.2]])
- s(interp_times)
- def test_slerp_call_time_out_of_range():
- np.random.seed(0)
- r = Rotation.from_quat(np.random.uniform(size=(5, 4)))
- t = np.arange(5) + 1
- s = Slerp(t, r)
- with pytest.raises(ValueError, match="times must be within the range"):
- s([0, 1, 2])
- with pytest.raises(ValueError, match="times must be within the range"):
- s([1, 2, 6])
|