test_basic.py 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458
  1. # this program corresponds to special.py
  2. ### Means test is not done yet
  3. # E Means test is giving error (E)
  4. # F Means test is failing (F)
  5. # EF Means test is giving error and Failing
  6. #! Means test is segfaulting
  7. # 8 Means test runs forever
  8. ### test_besselpoly
  9. ### test_mathieu_a
  10. ### test_mathieu_even_coef
  11. ### test_mathieu_odd_coef
  12. ### test_modfresnelp
  13. ### test_modfresnelm
  14. # test_pbdv_seq
  15. ### test_pbvv_seq
  16. ### test_sph_harm
  17. from __future__ import division, print_function, absolute_import
  18. import itertools
  19. import numpy as np
  20. from numpy import (array, isnan, r_, arange, finfo, pi, sin, cos, tan, exp,
  21. log, zeros, sqrt, asarray, inf, nan_to_num, real, arctan, float_)
  22. import pytest
  23. from pytest import raises as assert_raises
  24. from numpy.testing import (assert_equal, assert_almost_equal,
  25. assert_array_equal, assert_array_almost_equal, assert_approx_equal,
  26. assert_, assert_allclose,
  27. assert_array_almost_equal_nulp)
  28. from scipy import special
  29. import scipy.special._ufuncs as cephes
  30. from scipy.special import ellipk, zeta
  31. from scipy.special._testutils import with_special_errors, \
  32. assert_func_equal, FuncData
  33. from scipy._lib._numpy_compat import suppress_warnings
  34. from scipy._lib._version import NumpyVersion
  35. import math
  36. class TestCephes(object):
  37. def test_airy(self):
  38. cephes.airy(0)
  39. def test_airye(self):
  40. cephes.airye(0)
  41. def test_binom(self):
  42. n = np.array([0.264, 4, 5.2, 17])
  43. k = np.array([2, 0.4, 7, 3.3])
  44. nk = np.array(np.broadcast_arrays(n[:,None], k[None,:])
  45. ).reshape(2, -1).T
  46. rknown = np.array([[-0.097152, 0.9263051596159367, 0.01858423645695389,
  47. -0.007581020651518199],[6, 2.0214389119675666, 0, 2.9827344527963846],
  48. [10.92, 2.22993515861399, -0.00585728, 10.468891352063146],
  49. [136, 3.5252179590758828, 19448, 1024.5526916174495]])
  50. assert_func_equal(cephes.binom, rknown.ravel(), nk, rtol=1e-13)
  51. # Test branches in implementation
  52. np.random.seed(1234)
  53. n = np.r_[np.arange(-7, 30), 1000*np.random.rand(30) - 500]
  54. k = np.arange(0, 102)
  55. nk = np.array(np.broadcast_arrays(n[:,None], k[None,:])
  56. ).reshape(2, -1).T
  57. assert_func_equal(cephes.binom,
  58. cephes.binom(nk[:,0], nk[:,1] * (1 + 1e-15)),
  59. nk,
  60. atol=1e-10, rtol=1e-10)
  61. def test_binom_2(self):
  62. # Test branches in implementation
  63. np.random.seed(1234)
  64. n = np.r_[np.logspace(1, 300, 20)]
  65. k = np.arange(0, 102)
  66. nk = np.array(np.broadcast_arrays(n[:,None], k[None,:])
  67. ).reshape(2, -1).T
  68. assert_func_equal(cephes.binom,
  69. cephes.binom(nk[:,0], nk[:,1] * (1 + 1e-15)),
  70. nk,
  71. atol=1e-10, rtol=1e-10)
  72. def test_binom_exact(self):
  73. @np.vectorize
  74. def binom_int(n, k):
  75. n = int(n)
  76. k = int(k)
  77. num = int(1)
  78. den = int(1)
  79. for i in range(1, k+1):
  80. num *= i + n - k
  81. den *= i
  82. return float(num/den)
  83. np.random.seed(1234)
  84. n = np.arange(1, 15)
  85. k = np.arange(0, 15)
  86. nk = np.array(np.broadcast_arrays(n[:,None], k[None,:])
  87. ).reshape(2, -1).T
  88. nk = nk[nk[:,0] >= nk[:,1]]
  89. assert_func_equal(cephes.binom,
  90. binom_int(nk[:,0], nk[:,1]),
  91. nk,
  92. atol=0, rtol=0)
  93. def test_binom_nooverflow_8346(self):
  94. # Test (binom(n, k) doesn't overflow prematurely */
  95. dataset = [
  96. (1000, 500, 2.70288240945436551e+299),
  97. (1002, 501, 1.08007396880791225e+300),
  98. (1004, 502, 4.31599279169058121e+300),
  99. (1006, 503, 1.72468101616263781e+301),
  100. (1008, 504, 6.89188009236419153e+301),
  101. (1010, 505, 2.75402257948335448e+302),
  102. (1012, 506, 1.10052048531923757e+303),
  103. (1014, 507, 4.39774063758732849e+303),
  104. (1016, 508, 1.75736486108312519e+304),
  105. (1018, 509, 7.02255427788423734e+304),
  106. (1020, 510, 2.80626776829962255e+305),
  107. (1022, 511, 1.12140876377061240e+306),
  108. (1024, 512, 4.48125455209897109e+306),
  109. (1026, 513, 1.79075474304149900e+307),
  110. (1028, 514, 7.15605105487789676e+307)
  111. ]
  112. dataset = np.asarray(dataset)
  113. FuncData(cephes.binom, dataset, (0, 1), 2, rtol=1e-12).check()
  114. def test_bdtr(self):
  115. assert_equal(cephes.bdtr(1,1,0.5),1.0)
  116. def test_bdtri(self):
  117. assert_equal(cephes.bdtri(1,3,0.5),0.5)
  118. def test_bdtrc(self):
  119. assert_equal(cephes.bdtrc(1,3,0.5),0.5)
  120. def test_bdtrin(self):
  121. assert_equal(cephes.bdtrin(1,0,1),5.0)
  122. def test_bdtrik(self):
  123. cephes.bdtrik(1,3,0.5)
  124. def test_bei(self):
  125. assert_equal(cephes.bei(0),0.0)
  126. def test_beip(self):
  127. assert_equal(cephes.beip(0),0.0)
  128. def test_ber(self):
  129. assert_equal(cephes.ber(0),1.0)
  130. def test_berp(self):
  131. assert_equal(cephes.berp(0),0.0)
  132. def test_besselpoly(self):
  133. assert_equal(cephes.besselpoly(0,0,0),1.0)
  134. def test_beta(self):
  135. assert_equal(cephes.beta(1,1),1.0)
  136. assert_allclose(cephes.beta(-100.3, 1e-200), cephes.gamma(1e-200))
  137. assert_allclose(cephes.beta(0.0342, 171), 24.070498359873497,
  138. rtol=1e-13, atol=0)
  139. def test_betainc(self):
  140. assert_equal(cephes.betainc(1,1,1),1.0)
  141. assert_allclose(cephes.betainc(0.0342, 171, 1e-10), 0.55269916901806648)
  142. def test_betaln(self):
  143. assert_equal(cephes.betaln(1,1),0.0)
  144. assert_allclose(cephes.betaln(-100.3, 1e-200), cephes.gammaln(1e-200))
  145. assert_allclose(cephes.betaln(0.0342, 170), 3.1811881124242447,
  146. rtol=1e-14, atol=0)
  147. def test_betaincinv(self):
  148. assert_equal(cephes.betaincinv(1,1,1),1.0)
  149. assert_allclose(cephes.betaincinv(0.0342, 171, 0.25),
  150. 8.4231316935498957e-21, rtol=3e-12, atol=0)
  151. def test_beta_inf(self):
  152. assert_(np.isinf(special.beta(-1, 2)))
  153. def test_btdtr(self):
  154. assert_equal(cephes.btdtr(1,1,1),1.0)
  155. def test_btdtri(self):
  156. assert_equal(cephes.btdtri(1,1,1),1.0)
  157. def test_btdtria(self):
  158. assert_equal(cephes.btdtria(1,1,1),5.0)
  159. def test_btdtrib(self):
  160. assert_equal(cephes.btdtrib(1,1,1),5.0)
  161. def test_cbrt(self):
  162. assert_approx_equal(cephes.cbrt(1),1.0)
  163. def test_chdtr(self):
  164. assert_equal(cephes.chdtr(1,0),0.0)
  165. def test_chdtrc(self):
  166. assert_equal(cephes.chdtrc(1,0),1.0)
  167. def test_chdtri(self):
  168. assert_equal(cephes.chdtri(1,1),0.0)
  169. def test_chdtriv(self):
  170. assert_equal(cephes.chdtriv(0,0),5.0)
  171. def test_chndtr(self):
  172. assert_equal(cephes.chndtr(0,1,0),0.0)
  173. # Each row holds (x, nu, lam, expected_value)
  174. # These values were computed using Wolfram Alpha with
  175. # CDF[NoncentralChiSquareDistribution[nu, lam], x]
  176. values = np.array([
  177. [25.00, 20.0, 400, 4.1210655112396197139e-57],
  178. [25.00, 8.00, 250, 2.3988026526832425878e-29],
  179. [0.001, 8.00, 40., 5.3761806201366039084e-24],
  180. [0.010, 8.00, 40., 5.45396231055999457039e-20],
  181. [20.00, 2.00, 107, 1.39390743555819597802e-9],
  182. [22.50, 2.00, 107, 7.11803307138105870671e-9],
  183. [25.00, 2.00, 107, 3.11041244829864897313e-8],
  184. [3.000, 2.00, 1.0, 0.62064365321954362734],
  185. [350.0, 300., 10., 0.93880128006276407710],
  186. [100.0, 13.5, 10., 0.99999999650104210949],
  187. [700.0, 20.0, 400, 0.99999999925680650105],
  188. [150.0, 13.5, 10., 0.99999999999999983046],
  189. [160.0, 13.5, 10., 0.99999999999999999518], # 1.0
  190. ])
  191. cdf = cephes.chndtr(values[:, 0], values[:, 1], values[:, 2])
  192. assert_allclose(cdf, values[:, 3], rtol=1e-12)
  193. assert_almost_equal(cephes.chndtr(np.inf, np.inf, 0), 2.0)
  194. assert_almost_equal(cephes.chndtr(2, 1, np.inf), 0.0)
  195. assert_(np.isnan(cephes.chndtr(np.nan, 1, 2)))
  196. assert_(np.isnan(cephes.chndtr(5, np.nan, 2)))
  197. assert_(np.isnan(cephes.chndtr(5, 1, np.nan)))
  198. def test_chndtridf(self):
  199. assert_equal(cephes.chndtridf(0,0,1),5.0)
  200. def test_chndtrinc(self):
  201. assert_equal(cephes.chndtrinc(0,1,0),5.0)
  202. def test_chndtrix(self):
  203. assert_equal(cephes.chndtrix(0,1,0),0.0)
  204. def test_cosdg(self):
  205. assert_equal(cephes.cosdg(0),1.0)
  206. def test_cosm1(self):
  207. assert_equal(cephes.cosm1(0),0.0)
  208. def test_cotdg(self):
  209. assert_almost_equal(cephes.cotdg(45),1.0)
  210. def test_dawsn(self):
  211. assert_equal(cephes.dawsn(0),0.0)
  212. assert_allclose(cephes.dawsn(1.23), 0.50053727749081767)
  213. def test_diric(self):
  214. # Test behavior near multiples of 2pi. Regression test for issue
  215. # described in gh-4001.
  216. n_odd = [1, 5, 25]
  217. x = np.array(2*np.pi + 5e-5).astype(np.float32)
  218. assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=7)
  219. x = np.array(2*np.pi + 1e-9).astype(np.float64)
  220. assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15)
  221. x = np.array(2*np.pi + 1e-15).astype(np.float64)
  222. assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15)
  223. if hasattr(np, 'float128'):
  224. # No float128 available in 32-bit numpy
  225. x = np.array(2*np.pi + 1e-12).astype(np.float128)
  226. assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=19)
  227. n_even = [2, 4, 24]
  228. x = np.array(2*np.pi + 1e-9).astype(np.float64)
  229. assert_almost_equal(special.diric(x, n_even), -1.0, decimal=15)
  230. # Test at some values not near a multiple of pi
  231. x = np.arange(0.2*np.pi, 1.0*np.pi, 0.2*np.pi)
  232. octave_result = [0.872677996249965, 0.539344662916632,
  233. 0.127322003750035, -0.206011329583298]
  234. assert_almost_equal(special.diric(x, 3), octave_result, decimal=15)
  235. def test_diric_broadcasting(self):
  236. x = np.arange(5)
  237. n = np.array([1, 3, 7])
  238. assert_(special.diric(x[:, np.newaxis], n).shape == (x.size, n.size))
  239. def test_ellipe(self):
  240. assert_equal(cephes.ellipe(1),1.0)
  241. def test_ellipeinc(self):
  242. assert_equal(cephes.ellipeinc(0,1),0.0)
  243. def test_ellipj(self):
  244. cephes.ellipj(0,1)
  245. def test_ellipk(self):
  246. assert_allclose(ellipk(0), pi/2)
  247. def test_ellipkinc(self):
  248. assert_equal(cephes.ellipkinc(0,0),0.0)
  249. def test_erf(self):
  250. assert_equal(cephes.erf(0), 0.0)
  251. def test_erf_symmetry(self):
  252. x = 5.905732037710919
  253. assert_equal(cephes.erf(x) + cephes.erf(-x), 0.0)
  254. def test_erfc(self):
  255. assert_equal(cephes.erfc(0), 1.0)
  256. def test_exp1(self):
  257. cephes.exp1(1)
  258. def test_expi(self):
  259. cephes.expi(1)
  260. def test_expn(self):
  261. cephes.expn(1,1)
  262. def test_exp1_reg(self):
  263. # Regression for #834
  264. a = cephes.exp1(-complex(19.9999990))
  265. b = cephes.exp1(-complex(19.9999991))
  266. assert_array_almost_equal(a.imag, b.imag)
  267. def test_exp10(self):
  268. assert_approx_equal(cephes.exp10(2),100.0)
  269. def test_exp2(self):
  270. assert_equal(cephes.exp2(2),4.0)
  271. def test_expm1(self):
  272. assert_equal(cephes.expm1(0),0.0)
  273. assert_equal(cephes.expm1(np.inf), np.inf)
  274. assert_equal(cephes.expm1(-np.inf), -1)
  275. assert_equal(cephes.expm1(np.nan), np.nan)
  276. # Earlier numpy version don't guarantee that npy_cexp conforms to C99.
  277. @pytest.mark.skipif(NumpyVersion(np.__version__) < '1.9.0', reason='')
  278. def test_expm1_complex(self):
  279. expm1 = cephes.expm1
  280. assert_equal(expm1(0 + 0j), 0 + 0j)
  281. assert_equal(expm1(complex(np.inf, 0)), complex(np.inf, 0))
  282. assert_equal(expm1(complex(np.inf, 1)), complex(np.inf, np.inf))
  283. assert_equal(expm1(complex(np.inf, 2)), complex(-np.inf, np.inf))
  284. assert_equal(expm1(complex(np.inf, 4)), complex(-np.inf, -np.inf))
  285. assert_equal(expm1(complex(np.inf, 5)), complex(np.inf, -np.inf))
  286. assert_equal(expm1(complex(1, np.inf)), complex(np.nan, np.nan))
  287. assert_equal(expm1(complex(0, np.inf)), complex(np.nan, np.nan))
  288. assert_equal(expm1(complex(np.inf, np.inf)), complex(np.inf, np.nan))
  289. assert_equal(expm1(complex(-np.inf, np.inf)), complex(-1, 0))
  290. assert_equal(expm1(complex(-np.inf, np.nan)), complex(-1, 0))
  291. assert_equal(expm1(complex(np.inf, np.nan)), complex(np.inf, np.nan))
  292. assert_equal(expm1(complex(0, np.nan)), complex(np.nan, np.nan))
  293. assert_equal(expm1(complex(1, np.nan)), complex(np.nan, np.nan))
  294. assert_equal(expm1(complex(np.nan, 1)), complex(np.nan, np.nan))
  295. assert_equal(expm1(complex(np.nan, np.nan)), complex(np.nan, np.nan))
  296. @pytest.mark.xfail(reason='The real part of expm1(z) bad at these points')
  297. def test_expm1_complex_hard(self):
  298. # The real part of this function is difficult to evaluate when
  299. # z.real = -log(cos(z.imag)).
  300. y = np.array([0.1, 0.2, 0.3, 5, 11, 20])
  301. x = -np.log(np.cos(y))
  302. z = x + 1j*y
  303. # evaluate using mpmath.expm1 with dps=1000
  304. expected = np.array([-5.5507901846769623e-17+0.10033467208545054j,
  305. 2.4289354732893695e-18+0.20271003550867248j,
  306. 4.5235500262585768e-17+0.30933624960962319j,
  307. 7.8234305217489006e-17-3.3805150062465863j,
  308. -1.3685191953697676e-16-225.95084645419513j,
  309. 8.7175620481291045e-17+2.2371609442247422j])
  310. found = cephes.expm1(z)
  311. # this passes.
  312. assert_array_almost_equal_nulp(found.imag, expected.imag, 3)
  313. # this fails.
  314. assert_array_almost_equal_nulp(found.real, expected.real, 20)
  315. def test_fdtr(self):
  316. assert_equal(cephes.fdtr(1, 1, 0), 0.0)
  317. # Computed using Wolfram Alpha: CDF[FRatioDistribution[1e-6, 5], 10]
  318. assert_allclose(cephes.fdtr(1e-6, 5, 10), 0.9999940790193488,
  319. rtol=1e-12)
  320. def test_fdtrc(self):
  321. assert_equal(cephes.fdtrc(1, 1, 0), 1.0)
  322. # Computed using Wolfram Alpha:
  323. # 1 - CDF[FRatioDistribution[2, 1/10], 1e10]
  324. assert_allclose(cephes.fdtrc(2, 0.1, 1e10), 0.27223784621293512,
  325. rtol=1e-12)
  326. def test_fdtri(self):
  327. assert_allclose(cephes.fdtri(1, 1, [0.499, 0.501]),
  328. array([0.9937365, 1.00630298]), rtol=1e-6)
  329. # From Wolfram Alpha:
  330. # CDF[FRatioDistribution[1/10, 1], 3] = 0.8756751669632105666874...
  331. p = 0.8756751669632105666874
  332. assert_allclose(cephes.fdtri(0.1, 1, p), 3, rtol=1e-12)
  333. @pytest.mark.xfail(reason='Returns nan on i686.')
  334. def test_fdtri_mysterious_failure(self):
  335. assert_allclose(cephes.fdtri(1, 1, 0.5), 1)
  336. def test_fdtridfd(self):
  337. assert_equal(cephes.fdtridfd(1,0,0),5.0)
  338. def test_fresnel(self):
  339. assert_equal(cephes.fresnel(0),(0.0,0.0))
  340. def test_gamma(self):
  341. assert_equal(cephes.gamma(5),24.0)
  342. def test_gammainc(self):
  343. assert_equal(cephes.gammainc(5,0),0.0)
  344. def test_gammaincc(self):
  345. assert_equal(cephes.gammaincc(5,0),1.0)
  346. def test_gammainccinv(self):
  347. assert_equal(cephes.gammainccinv(5,1),0.0)
  348. def test_gammaln(self):
  349. cephes.gammaln(10)
  350. def test_gammasgn(self):
  351. vals = np.array([-4, -3.5, -2.3, 1, 4.2], np.float64)
  352. assert_array_equal(cephes.gammasgn(vals), np.sign(cephes.rgamma(vals)))
  353. def test_gdtr(self):
  354. assert_equal(cephes.gdtr(1,1,0),0.0)
  355. def test_gdtr_inf(self):
  356. assert_equal(cephes.gdtr(1,1,np.inf),1.0)
  357. def test_gdtrc(self):
  358. assert_equal(cephes.gdtrc(1,1,0),1.0)
  359. def test_gdtria(self):
  360. assert_equal(cephes.gdtria(0,1,1),0.0)
  361. def test_gdtrib(self):
  362. cephes.gdtrib(1,0,1)
  363. # assert_equal(cephes.gdtrib(1,0,1),5.0)
  364. def test_gdtrix(self):
  365. cephes.gdtrix(1,1,.1)
  366. def test_hankel1(self):
  367. cephes.hankel1(1,1)
  368. def test_hankel1e(self):
  369. cephes.hankel1e(1,1)
  370. def test_hankel2(self):
  371. cephes.hankel2(1,1)
  372. def test_hankel2e(self):
  373. cephes.hankel2e(1,1)
  374. def test_hyp1f1(self):
  375. assert_approx_equal(cephes.hyp1f1(1,1,1), exp(1.0))
  376. assert_approx_equal(cephes.hyp1f1(3,4,-6), 0.026056422099537251095)
  377. cephes.hyp1f1(1,1,1)
  378. def test_hyp2f1(self):
  379. assert_equal(cephes.hyp2f1(1,1,1,0),1.0)
  380. def test_hyperu(self):
  381. assert_equal(cephes.hyperu(0,1,1),1.0)
  382. def test_i0(self):
  383. assert_equal(cephes.i0(0),1.0)
  384. def test_i0e(self):
  385. assert_equal(cephes.i0e(0),1.0)
  386. def test_i1(self):
  387. assert_equal(cephes.i1(0),0.0)
  388. def test_i1e(self):
  389. assert_equal(cephes.i1e(0),0.0)
  390. def test_it2i0k0(self):
  391. cephes.it2i0k0(1)
  392. def test_it2j0y0(self):
  393. cephes.it2j0y0(1)
  394. def test_it2struve0(self):
  395. cephes.it2struve0(1)
  396. def test_itairy(self):
  397. cephes.itairy(1)
  398. def test_iti0k0(self):
  399. assert_equal(cephes.iti0k0(0),(0.0,0.0))
  400. def test_itj0y0(self):
  401. assert_equal(cephes.itj0y0(0),(0.0,0.0))
  402. def test_itmodstruve0(self):
  403. assert_equal(cephes.itmodstruve0(0),0.0)
  404. def test_itstruve0(self):
  405. assert_equal(cephes.itstruve0(0),0.0)
  406. def test_iv(self):
  407. assert_equal(cephes.iv(1,0),0.0)
  408. def _check_ive(self):
  409. assert_equal(cephes.ive(1,0),0.0)
  410. def test_j0(self):
  411. assert_equal(cephes.j0(0),1.0)
  412. def test_j1(self):
  413. assert_equal(cephes.j1(0),0.0)
  414. def test_jn(self):
  415. assert_equal(cephes.jn(0,0),1.0)
  416. def test_jv(self):
  417. assert_equal(cephes.jv(0,0),1.0)
  418. def _check_jve(self):
  419. assert_equal(cephes.jve(0,0),1.0)
  420. def test_k0(self):
  421. cephes.k0(2)
  422. def test_k0e(self):
  423. cephes.k0e(2)
  424. def test_k1(self):
  425. cephes.k1(2)
  426. def test_k1e(self):
  427. cephes.k1e(2)
  428. def test_kei(self):
  429. cephes.kei(2)
  430. def test_keip(self):
  431. assert_equal(cephes.keip(0),0.0)
  432. def test_ker(self):
  433. cephes.ker(2)
  434. def test_kerp(self):
  435. cephes.kerp(2)
  436. def _check_kelvin(self):
  437. cephes.kelvin(2)
  438. def test_kn(self):
  439. cephes.kn(1,1)
  440. def test_kolmogi(self):
  441. assert_equal(cephes.kolmogi(1),0.0)
  442. assert_(np.isnan(cephes.kolmogi(np.nan)))
  443. def test_kolmogorov(self):
  444. assert_equal(cephes.kolmogorov(0), 1.0)
  445. def test_kolmogp(self):
  446. assert_equal(cephes._kolmogp(0), -0.0)
  447. def test_kolmogc(self):
  448. assert_equal(cephes._kolmogc(0), 0.0)
  449. def test_kolmogci(self):
  450. assert_equal(cephes._kolmogci(0), 0.0)
  451. assert_(np.isnan(cephes._kolmogci(np.nan)))
  452. def _check_kv(self):
  453. cephes.kv(1,1)
  454. def _check_kve(self):
  455. cephes.kve(1,1)
  456. def test_log1p(self):
  457. log1p = cephes.log1p
  458. assert_equal(log1p(0), 0.0)
  459. assert_equal(log1p(-1), -np.inf)
  460. assert_equal(log1p(-2), np.nan)
  461. assert_equal(log1p(np.inf), np.inf)
  462. # earlier numpy version don't guarantee that npy_clog conforms to C99
  463. @pytest.mark.skipif(NumpyVersion(np.__version__) < '1.9.0', reason='')
  464. def test_log1p_complex(self):
  465. log1p = cephes.log1p
  466. c = complex
  467. assert_equal(log1p(0 + 0j), 0 + 0j)
  468. assert_equal(log1p(c(-1, 0)), c(-np.inf, 0))
  469. with suppress_warnings() as sup:
  470. sup.filter(RuntimeWarning, "invalid value encountered in multiply")
  471. assert_allclose(log1p(c(1, np.inf)), c(np.inf, np.pi/2))
  472. assert_equal(log1p(c(1, np.nan)), c(np.nan, np.nan))
  473. assert_allclose(log1p(c(-np.inf, 1)), c(np.inf, np.pi))
  474. assert_equal(log1p(c(np.inf, 1)), c(np.inf, 0))
  475. assert_allclose(log1p(c(-np.inf, np.inf)), c(np.inf, 3*np.pi/4))
  476. assert_allclose(log1p(c(np.inf, np.inf)), c(np.inf, np.pi/4))
  477. assert_equal(log1p(c(np.inf, np.nan)), c(np.inf, np.nan))
  478. assert_equal(log1p(c(-np.inf, np.nan)), c(np.inf, np.nan))
  479. assert_equal(log1p(c(np.nan, np.inf)), c(np.inf, np.nan))
  480. assert_equal(log1p(c(np.nan, 1)), c(np.nan, np.nan))
  481. assert_equal(log1p(c(np.nan, np.nan)), c(np.nan, np.nan))
  482. def test_lpmv(self):
  483. assert_equal(cephes.lpmv(0,0,1),1.0)
  484. def test_mathieu_a(self):
  485. assert_equal(cephes.mathieu_a(1,0),1.0)
  486. def test_mathieu_b(self):
  487. assert_equal(cephes.mathieu_b(1,0),1.0)
  488. def test_mathieu_cem(self):
  489. assert_equal(cephes.mathieu_cem(1,0,0),(1.0,0.0))
  490. # Test AMS 20.2.27
  491. @np.vectorize
  492. def ce_smallq(m, q, z):
  493. z *= np.pi/180
  494. if m == 0:
  495. return 2**(-0.5) * (1 - .5*q*cos(2*z)) # + O(q^2)
  496. elif m == 1:
  497. return cos(z) - q/8 * cos(3*z) # + O(q^2)
  498. elif m == 2:
  499. return cos(2*z) - q*(cos(4*z)/12 - 1/4) # + O(q^2)
  500. else:
  501. return cos(m*z) - q*(cos((m+2)*z)/(4*(m+1)) - cos((m-2)*z)/(4*(m-1))) # + O(q^2)
  502. m = np.arange(0, 100)
  503. q = np.r_[0, np.logspace(-30, -9, 10)]
  504. assert_allclose(cephes.mathieu_cem(m[:,None], q[None,:], 0.123)[0],
  505. ce_smallq(m[:,None], q[None,:], 0.123),
  506. rtol=1e-14, atol=0)
  507. def test_mathieu_sem(self):
  508. assert_equal(cephes.mathieu_sem(1,0,0),(0.0,1.0))
  509. # Test AMS 20.2.27
  510. @np.vectorize
  511. def se_smallq(m, q, z):
  512. z *= np.pi/180
  513. if m == 1:
  514. return sin(z) - q/8 * sin(3*z) # + O(q^2)
  515. elif m == 2:
  516. return sin(2*z) - q*sin(4*z)/12 # + O(q^2)
  517. else:
  518. return sin(m*z) - q*(sin((m+2)*z)/(4*(m+1)) - sin((m-2)*z)/(4*(m-1))) # + O(q^2)
  519. m = np.arange(1, 100)
  520. q = np.r_[0, np.logspace(-30, -9, 10)]
  521. assert_allclose(cephes.mathieu_sem(m[:,None], q[None,:], 0.123)[0],
  522. se_smallq(m[:,None], q[None,:], 0.123),
  523. rtol=1e-14, atol=0)
  524. def test_mathieu_modcem1(self):
  525. assert_equal(cephes.mathieu_modcem1(1,0,0),(0.0,0.0))
  526. def test_mathieu_modcem2(self):
  527. cephes.mathieu_modcem2(1,1,1)
  528. # Test reflection relation AMS 20.6.19
  529. m = np.arange(0, 4)[:,None,None]
  530. q = np.r_[np.logspace(-2, 2, 10)][None,:,None]
  531. z = np.linspace(0, 1, 7)[None,None,:]
  532. y1 = cephes.mathieu_modcem2(m, q, -z)[0]
  533. fr = -cephes.mathieu_modcem2(m, q, 0)[0] / cephes.mathieu_modcem1(m, q, 0)[0]
  534. y2 = -cephes.mathieu_modcem2(m, q, z)[0] - 2*fr*cephes.mathieu_modcem1(m, q, z)[0]
  535. assert_allclose(y1, y2, rtol=1e-10)
  536. def test_mathieu_modsem1(self):
  537. assert_equal(cephes.mathieu_modsem1(1,0,0),(0.0,0.0))
  538. def test_mathieu_modsem2(self):
  539. cephes.mathieu_modsem2(1,1,1)
  540. # Test reflection relation AMS 20.6.20
  541. m = np.arange(1, 4)[:,None,None]
  542. q = np.r_[np.logspace(-2, 2, 10)][None,:,None]
  543. z = np.linspace(0, 1, 7)[None,None,:]
  544. y1 = cephes.mathieu_modsem2(m, q, -z)[0]
  545. fr = cephes.mathieu_modsem2(m, q, 0)[1] / cephes.mathieu_modsem1(m, q, 0)[1]
  546. y2 = cephes.mathieu_modsem2(m, q, z)[0] - 2*fr*cephes.mathieu_modsem1(m, q, z)[0]
  547. assert_allclose(y1, y2, rtol=1e-10)
  548. def test_mathieu_overflow(self):
  549. # Check that these return NaNs instead of causing a SEGV
  550. assert_equal(cephes.mathieu_cem(10000, 0, 1.3), (np.nan, np.nan))
  551. assert_equal(cephes.mathieu_sem(10000, 0, 1.3), (np.nan, np.nan))
  552. assert_equal(cephes.mathieu_cem(10000, 1.5, 1.3), (np.nan, np.nan))
  553. assert_equal(cephes.mathieu_sem(10000, 1.5, 1.3), (np.nan, np.nan))
  554. assert_equal(cephes.mathieu_modcem1(10000, 1.5, 1.3), (np.nan, np.nan))
  555. assert_equal(cephes.mathieu_modsem1(10000, 1.5, 1.3), (np.nan, np.nan))
  556. assert_equal(cephes.mathieu_modcem2(10000, 1.5, 1.3), (np.nan, np.nan))
  557. assert_equal(cephes.mathieu_modsem2(10000, 1.5, 1.3), (np.nan, np.nan))
  558. def test_mathieu_ticket_1847(self):
  559. # Regression test --- this call had some out-of-bounds access
  560. # and could return nan occasionally
  561. for k in range(60):
  562. v = cephes.mathieu_modsem2(2, 100, -1)
  563. # Values from ACM TOMS 804 (derivate by numerical differentiation)
  564. assert_allclose(v[0], 0.1431742913063671074347, rtol=1e-10)
  565. assert_allclose(v[1], 0.9017807375832909144719, rtol=1e-4)
  566. def test_modfresnelm(self):
  567. cephes.modfresnelm(0)
  568. def test_modfresnelp(self):
  569. cephes.modfresnelp(0)
  570. def _check_modstruve(self):
  571. assert_equal(cephes.modstruve(1,0),0.0)
  572. def test_nbdtr(self):
  573. assert_equal(cephes.nbdtr(1,1,1),1.0)
  574. def test_nbdtrc(self):
  575. assert_equal(cephes.nbdtrc(1,1,1),0.0)
  576. def test_nbdtri(self):
  577. assert_equal(cephes.nbdtri(1,1,1),1.0)
  578. def __check_nbdtrik(self):
  579. cephes.nbdtrik(1,.4,.5)
  580. def test_nbdtrin(self):
  581. assert_equal(cephes.nbdtrin(1,0,0),5.0)
  582. def test_ncfdtr(self):
  583. assert_equal(cephes.ncfdtr(1,1,1,0),0.0)
  584. def test_ncfdtri(self):
  585. assert_equal(cephes.ncfdtri(1, 1, 1, 0), 0.0)
  586. f = [0.5, 1, 1.5]
  587. p = cephes.ncfdtr(2, 3, 1.5, f)
  588. assert_allclose(cephes.ncfdtri(2, 3, 1.5, p), f)
  589. def test_ncfdtridfd(self):
  590. dfd = [1, 2, 3]
  591. p = cephes.ncfdtr(2, dfd, 0.25, 15)
  592. assert_allclose(cephes.ncfdtridfd(2, p, 0.25, 15), dfd)
  593. def test_ncfdtridfn(self):
  594. dfn = [0.1, 1, 2, 3, 1e4]
  595. p = cephes.ncfdtr(dfn, 2, 0.25, 15)
  596. assert_allclose(cephes.ncfdtridfn(p, 2, 0.25, 15), dfn, rtol=1e-5)
  597. def test_ncfdtrinc(self):
  598. nc = [0.5, 1.5, 2.0]
  599. p = cephes.ncfdtr(2, 3, nc, 15)
  600. assert_allclose(cephes.ncfdtrinc(2, 3, p, 15), nc)
  601. def test_nctdtr(self):
  602. assert_equal(cephes.nctdtr(1,0,0),0.5)
  603. assert_equal(cephes.nctdtr(9, 65536, 45), 0.0)
  604. assert_approx_equal(cephes.nctdtr(np.inf, 1., 1.), 0.5, 5)
  605. assert_(np.isnan(cephes.nctdtr(2., np.inf, 10.)))
  606. assert_approx_equal(cephes.nctdtr(2., 1., np.inf), 1.)
  607. assert_(np.isnan(cephes.nctdtr(np.nan, 1., 1.)))
  608. assert_(np.isnan(cephes.nctdtr(2., np.nan, 1.)))
  609. assert_(np.isnan(cephes.nctdtr(2., 1., np.nan)))
  610. def __check_nctdtridf(self):
  611. cephes.nctdtridf(1,0.5,0)
  612. def test_nctdtrinc(self):
  613. cephes.nctdtrinc(1,0,0)
  614. def test_nctdtrit(self):
  615. cephes.nctdtrit(.1,0.2,.5)
  616. def test_ndtr(self):
  617. assert_equal(cephes.ndtr(0), 0.5)
  618. assert_almost_equal(cephes.ndtr(1), 0.84134474606)
  619. def test_ndtri(self):
  620. assert_equal(cephes.ndtri(0.5),0.0)
  621. def test_nrdtrimn(self):
  622. assert_approx_equal(cephes.nrdtrimn(0.5,1,1),1.0)
  623. def test_nrdtrisd(self):
  624. assert_allclose(cephes.nrdtrisd(0.5,0.5,0.5), 0.0,
  625. atol=0, rtol=0)
  626. def test_obl_ang1(self):
  627. cephes.obl_ang1(1,1,1,0)
  628. def test_obl_ang1_cv(self):
  629. result = cephes.obl_ang1_cv(1,1,1,1,0)
  630. assert_almost_equal(result[0],1.0)
  631. assert_almost_equal(result[1],0.0)
  632. def _check_obl_cv(self):
  633. assert_equal(cephes.obl_cv(1,1,0),2.0)
  634. def test_obl_rad1(self):
  635. cephes.obl_rad1(1,1,1,0)
  636. def test_obl_rad1_cv(self):
  637. cephes.obl_rad1_cv(1,1,1,1,0)
  638. def test_obl_rad2(self):
  639. cephes.obl_rad2(1,1,1,0)
  640. def test_obl_rad2_cv(self):
  641. cephes.obl_rad2_cv(1,1,1,1,0)
  642. def test_pbdv(self):
  643. assert_equal(cephes.pbdv(1,0),(0.0,1.0))
  644. def test_pbvv(self):
  645. cephes.pbvv(1,0)
  646. def test_pbwa(self):
  647. cephes.pbwa(1,0)
  648. def test_pdtr(self):
  649. val = cephes.pdtr(0, 1)
  650. assert_almost_equal(val, np.exp(-1))
  651. # Edge case: m = 0.
  652. val = cephes.pdtr([0, 1, 2], 0.0)
  653. assert_array_equal(val, [1, 1, 1])
  654. def test_pdtrc(self):
  655. val = cephes.pdtrc(0, 1)
  656. assert_almost_equal(val, 1 - np.exp(-1))
  657. # Edge case: m = 0.
  658. val = cephes.pdtrc([0, 1, 2], 0.0)
  659. assert_array_equal(val, [0, 0, 0])
  660. def test_pdtri(self):
  661. with suppress_warnings() as sup:
  662. sup.filter(RuntimeWarning, "floating point number truncated to an integer")
  663. cephes.pdtri(0.5,0.5)
  664. def test_pdtrik(self):
  665. k = cephes.pdtrik(0.5, 1)
  666. assert_almost_equal(cephes.gammaincc(k + 1, 1), 0.5)
  667. # Edge case: m = 0 or very small.
  668. k = cephes.pdtrik([[0], [0.25], [0.95]], [0, 1e-20, 1e-6])
  669. assert_array_equal(k, np.zeros((3, 3)))
  670. def test_pro_ang1(self):
  671. cephes.pro_ang1(1,1,1,0)
  672. def test_pro_ang1_cv(self):
  673. assert_array_almost_equal(cephes.pro_ang1_cv(1,1,1,1,0),
  674. array((1.0,0.0)))
  675. def _check_pro_cv(self):
  676. assert_equal(cephes.pro_cv(1,1,0),2.0)
  677. def test_pro_rad1(self):
  678. cephes.pro_rad1(1,1,1,0.1)
  679. def test_pro_rad1_cv(self):
  680. cephes.pro_rad1_cv(1,1,1,1,0)
  681. def test_pro_rad2(self):
  682. cephes.pro_rad2(1,1,1,0)
  683. def test_pro_rad2_cv(self):
  684. cephes.pro_rad2_cv(1,1,1,1,0)
  685. def test_psi(self):
  686. cephes.psi(1)
  687. def test_radian(self):
  688. assert_equal(cephes.radian(0,0,0),0)
  689. def test_rgamma(self):
  690. assert_equal(cephes.rgamma(1),1.0)
  691. def test_round(self):
  692. assert_equal(cephes.round(3.4),3.0)
  693. assert_equal(cephes.round(-3.4),-3.0)
  694. assert_equal(cephes.round(3.6),4.0)
  695. assert_equal(cephes.round(-3.6),-4.0)
  696. assert_equal(cephes.round(3.5),4.0)
  697. assert_equal(cephes.round(-3.5),-4.0)
  698. def test_shichi(self):
  699. cephes.shichi(1)
  700. def test_sici(self):
  701. cephes.sici(1)
  702. s, c = cephes.sici(np.inf)
  703. assert_almost_equal(s, np.pi * 0.5)
  704. assert_almost_equal(c, 0)
  705. s, c = cephes.sici(-np.inf)
  706. assert_almost_equal(s, -np.pi * 0.5)
  707. assert_(np.isnan(c), "cosine integral(-inf) is not nan")
  708. def test_sindg(self):
  709. assert_equal(cephes.sindg(90),1.0)
  710. def test_smirnov(self):
  711. assert_equal(cephes.smirnov(1,.1),0.9)
  712. assert_(np.isnan(cephes.smirnov(1,np.nan)))
  713. def test_smirnovp(self):
  714. assert_equal(cephes._smirnovp(1, .1), -1)
  715. assert_equal(cephes._smirnovp(2, 0.75), -2*(0.25)**(2-1))
  716. assert_equal(cephes._smirnovp(3, 0.75), -3*(0.25)**(3-1))
  717. assert_(np.isnan(cephes._smirnovp(1, np.nan)))
  718. def test_smirnovc(self):
  719. assert_equal(cephes._smirnovc(1,.1),0.1)
  720. assert_(np.isnan(cephes._smirnovc(1,np.nan)))
  721. x10 = np.linspace(0, 1, 11, endpoint=True)
  722. assert_almost_equal(cephes._smirnovc(3, x10), 1-cephes.smirnov(3, x10))
  723. x4 = np.linspace(0, 1, 5, endpoint=True)
  724. assert_almost_equal(cephes._smirnovc(4, x4), 1-cephes.smirnov(4, x4))
  725. def test_smirnovi(self):
  726. assert_almost_equal(cephes.smirnov(1,cephes.smirnovi(1,0.4)),0.4)
  727. assert_almost_equal(cephes.smirnov(1,cephes.smirnovi(1,0.6)),0.6)
  728. assert_(np.isnan(cephes.smirnovi(1,np.nan)))
  729. def test_smirnovci(self):
  730. assert_almost_equal(cephes._smirnovc(1,cephes._smirnovci(1,0.4)),0.4)
  731. assert_almost_equal(cephes._smirnovc(1,cephes._smirnovci(1,0.6)),0.6)
  732. assert_(np.isnan(cephes._smirnovci(1,np.nan)))
  733. def test_spence(self):
  734. assert_equal(cephes.spence(1),0.0)
  735. def test_stdtr(self):
  736. assert_equal(cephes.stdtr(1,0),0.5)
  737. assert_almost_equal(cephes.stdtr(1,1), 0.75)
  738. assert_almost_equal(cephes.stdtr(1,2), 0.852416382349)
  739. def test_stdtridf(self):
  740. cephes.stdtridf(0.7,1)
  741. def test_stdtrit(self):
  742. cephes.stdtrit(1,0.7)
  743. def test_struve(self):
  744. assert_equal(cephes.struve(0,0),0.0)
  745. def test_tandg(self):
  746. assert_equal(cephes.tandg(45),1.0)
  747. def test_tklmbda(self):
  748. assert_almost_equal(cephes.tklmbda(1,1),1.0)
  749. def test_y0(self):
  750. cephes.y0(1)
  751. def test_y1(self):
  752. cephes.y1(1)
  753. def test_yn(self):
  754. cephes.yn(1,1)
  755. def test_yv(self):
  756. cephes.yv(1,1)
  757. def _check_yve(self):
  758. cephes.yve(1,1)
  759. def test_wofz(self):
  760. z = [complex(624.2,-0.26123), complex(-0.4,3.), complex(0.6,2.),
  761. complex(-1.,1.), complex(-1.,-9.), complex(-1.,9.),
  762. complex(-0.0000000234545,1.1234), complex(-3.,5.1),
  763. complex(-53,30.1), complex(0.0,0.12345),
  764. complex(11,1), complex(-22,-2), complex(9,-28),
  765. complex(21,-33), complex(1e5,1e5), complex(1e14,1e14)
  766. ]
  767. w = [
  768. complex(-3.78270245518980507452677445620103199303131110e-7,
  769. 0.000903861276433172057331093754199933411710053155),
  770. complex(0.1764906227004816847297495349730234591778719532788,
  771. -0.02146550539468457616788719893991501311573031095617),
  772. complex(0.2410250715772692146133539023007113781272362309451,
  773. 0.06087579663428089745895459735240964093522265589350),
  774. complex(0.30474420525691259245713884106959496013413834051768,
  775. -0.20821893820283162728743734725471561394145872072738),
  776. complex(7.317131068972378096865595229600561710140617977e34,
  777. 8.321873499714402777186848353320412813066170427e34),
  778. complex(0.0615698507236323685519612934241429530190806818395,
  779. -0.00676005783716575013073036218018565206070072304635),
  780. complex(0.3960793007699874918961319170187598400134746631,
  781. -5.593152259116644920546186222529802777409274656e-9),
  782. complex(0.08217199226739447943295069917990417630675021771804,
  783. -0.04701291087643609891018366143118110965272615832184),
  784. complex(0.00457246000350281640952328010227885008541748668738,
  785. -0.00804900791411691821818731763401840373998654987934),
  786. complex(0.8746342859608052666092782112565360755791467973338452,
  787. 0.),
  788. complex(0.00468190164965444174367477874864366058339647648741,
  789. 0.0510735563901306197993676329845149741675029197050),
  790. complex(-0.0023193175200187620902125853834909543869428763219,
  791. -0.025460054739731556004902057663500272721780776336),
  792. complex(9.11463368405637174660562096516414499772662584e304,
  793. 3.97101807145263333769664875189354358563218932e305),
  794. complex(-4.4927207857715598976165541011143706155432296e281,
  795. -2.8019591213423077494444700357168707775769028e281),
  796. complex(2.820947917809305132678577516325951485807107151e-6,
  797. 2.820947917668257736791638444590253942253354058e-6),
  798. complex(2.82094791773878143474039725787438662716372268e-15,
  799. 2.82094791773878143474039725773333923127678361e-15)
  800. ]
  801. assert_func_equal(cephes.wofz, w, z, rtol=1e-13)
  802. class TestAiry(object):
  803. def test_airy(self):
  804. # This tests the airy function to ensure 8 place accuracy in computation
  805. x = special.airy(.99)
  806. assert_array_almost_equal(x,array([0.13689066,-0.16050153,1.19815925,0.92046818]),8)
  807. x = special.airy(.41)
  808. assert_array_almost_equal(x,array([0.25238916,-.23480512,0.80686202,0.51053919]),8)
  809. x = special.airy(-.36)
  810. assert_array_almost_equal(x,array([0.44508477,-0.23186773,0.44939534,0.48105354]),8)
  811. def test_airye(self):
  812. a = special.airye(0.01)
  813. b = special.airy(0.01)
  814. b1 = [None]*4
  815. for n in range(2):
  816. b1[n] = b[n]*exp(2.0/3.0*0.01*sqrt(0.01))
  817. for n in range(2,4):
  818. b1[n] = b[n]*exp(-abs(real(2.0/3.0*0.01*sqrt(0.01))))
  819. assert_array_almost_equal(a,b1,6)
  820. def test_bi_zeros(self):
  821. bi = special.bi_zeros(2)
  822. bia = (array([-1.17371322, -3.2710930]),
  823. array([-2.29443968, -4.07315509]),
  824. array([-0.45494438, 0.39652284]),
  825. array([0.60195789, -0.76031014]))
  826. assert_array_almost_equal(bi,bia,4)
  827. bi = special.bi_zeros(5)
  828. assert_array_almost_equal(bi[0],array([-1.173713222709127,
  829. -3.271093302836352,
  830. -4.830737841662016,
  831. -6.169852128310251,
  832. -7.376762079367764]),11)
  833. assert_array_almost_equal(bi[1],array([-2.294439682614122,
  834. -4.073155089071828,
  835. -5.512395729663599,
  836. -6.781294445990305,
  837. -7.940178689168587]),10)
  838. assert_array_almost_equal(bi[2],array([-0.454944383639657,
  839. 0.396522836094465,
  840. -0.367969161486959,
  841. 0.349499116831805,
  842. -0.336026240133662]),11)
  843. assert_array_almost_equal(bi[3],array([0.601957887976239,
  844. -0.760310141492801,
  845. 0.836991012619261,
  846. -0.88947990142654,
  847. 0.929983638568022]),10)
  848. def test_ai_zeros(self):
  849. ai = special.ai_zeros(1)
  850. assert_array_almost_equal(ai,(array([-2.33810741]),
  851. array([-1.01879297]),
  852. array([0.5357]),
  853. array([0.7012])),4)
  854. def test_ai_zeros_big(self):
  855. z, zp, ai_zpx, aip_zx = special.ai_zeros(50000)
  856. ai_z, aip_z, _, _ = special.airy(z)
  857. ai_zp, aip_zp, _, _ = special.airy(zp)
  858. ai_envelope = 1/abs(z)**(1./4)
  859. aip_envelope = abs(zp)**(1./4)
  860. # Check values
  861. assert_allclose(ai_zpx, ai_zp, rtol=1e-10)
  862. assert_allclose(aip_zx, aip_z, rtol=1e-10)
  863. # Check they are zeros
  864. assert_allclose(ai_z/ai_envelope, 0, atol=1e-10, rtol=0)
  865. assert_allclose(aip_zp/aip_envelope, 0, atol=1e-10, rtol=0)
  866. # Check first zeros, DLMF 9.9.1
  867. assert_allclose(z[:6],
  868. [-2.3381074105, -4.0879494441, -5.5205598281,
  869. -6.7867080901, -7.9441335871, -9.0226508533], rtol=1e-10)
  870. assert_allclose(zp[:6],
  871. [-1.0187929716, -3.2481975822, -4.8200992112,
  872. -6.1633073556, -7.3721772550, -8.4884867340], rtol=1e-10)
  873. def test_bi_zeros_big(self):
  874. z, zp, bi_zpx, bip_zx = special.bi_zeros(50000)
  875. _, _, bi_z, bip_z = special.airy(z)
  876. _, _, bi_zp, bip_zp = special.airy(zp)
  877. bi_envelope = 1/abs(z)**(1./4)
  878. bip_envelope = abs(zp)**(1./4)
  879. # Check values
  880. assert_allclose(bi_zpx, bi_zp, rtol=1e-10)
  881. assert_allclose(bip_zx, bip_z, rtol=1e-10)
  882. # Check they are zeros
  883. assert_allclose(bi_z/bi_envelope, 0, atol=1e-10, rtol=0)
  884. assert_allclose(bip_zp/bip_envelope, 0, atol=1e-10, rtol=0)
  885. # Check first zeros, DLMF 9.9.2
  886. assert_allclose(z[:6],
  887. [-1.1737132227, -3.2710933028, -4.8307378417,
  888. -6.1698521283, -7.3767620794, -8.4919488465], rtol=1e-10)
  889. assert_allclose(zp[:6],
  890. [-2.2944396826, -4.0731550891, -5.5123957297,
  891. -6.7812944460, -7.9401786892, -9.0195833588], rtol=1e-10)
  892. class TestAssocLaguerre(object):
  893. def test_assoc_laguerre(self):
  894. a1 = special.genlaguerre(11,1)
  895. a2 = special.assoc_laguerre(.2,11,1)
  896. assert_array_almost_equal(a2,a1(.2),8)
  897. a2 = special.assoc_laguerre(1,11,1)
  898. assert_array_almost_equal(a2,a1(1),8)
  899. class TestBesselpoly(object):
  900. def test_besselpoly(self):
  901. pass
  902. class TestKelvin(object):
  903. def test_bei(self):
  904. mbei = special.bei(2)
  905. assert_almost_equal(mbei, 0.9722916273066613,5) # this may not be exact
  906. def test_beip(self):
  907. mbeip = special.beip(2)
  908. assert_almost_equal(mbeip,0.91701361338403631,5) # this may not be exact
  909. def test_ber(self):
  910. mber = special.ber(2)
  911. assert_almost_equal(mber,0.75173418271380821,5) # this may not be exact
  912. def test_berp(self):
  913. mberp = special.berp(2)
  914. assert_almost_equal(mberp,-0.49306712470943909,5) # this may not be exact
  915. def test_bei_zeros(self):
  916. # Abramowitz & Stegun, Table 9.12
  917. bi = special.bei_zeros(5)
  918. assert_array_almost_equal(bi,array([5.02622,
  919. 9.45541,
  920. 13.89349,
  921. 18.33398,
  922. 22.77544]),4)
  923. def test_beip_zeros(self):
  924. bip = special.beip_zeros(5)
  925. assert_array_almost_equal(bip,array([3.772673304934953,
  926. 8.280987849760042,
  927. 12.742147523633703,
  928. 17.193431752512542,
  929. 21.641143941167325]),8)
  930. def test_ber_zeros(self):
  931. ber = special.ber_zeros(5)
  932. assert_array_almost_equal(ber,array([2.84892,
  933. 7.23883,
  934. 11.67396,
  935. 16.11356,
  936. 20.55463]),4)
  937. def test_berp_zeros(self):
  938. brp = special.berp_zeros(5)
  939. assert_array_almost_equal(brp,array([6.03871,
  940. 10.51364,
  941. 14.96844,
  942. 19.41758,
  943. 23.86430]),4)
  944. def test_kelvin(self):
  945. mkelv = special.kelvin(2)
  946. assert_array_almost_equal(mkelv,(special.ber(2) + special.bei(2)*1j,
  947. special.ker(2) + special.kei(2)*1j,
  948. special.berp(2) + special.beip(2)*1j,
  949. special.kerp(2) + special.keip(2)*1j),8)
  950. def test_kei(self):
  951. mkei = special.kei(2)
  952. assert_almost_equal(mkei,-0.20240006776470432,5)
  953. def test_keip(self):
  954. mkeip = special.keip(2)
  955. assert_almost_equal(mkeip,0.21980790991960536,5)
  956. def test_ker(self):
  957. mker = special.ker(2)
  958. assert_almost_equal(mker,-0.041664513991509472,5)
  959. def test_kerp(self):
  960. mkerp = special.kerp(2)
  961. assert_almost_equal(mkerp,-0.10660096588105264,5)
  962. def test_kei_zeros(self):
  963. kei = special.kei_zeros(5)
  964. assert_array_almost_equal(kei,array([3.91467,
  965. 8.34422,
  966. 12.78256,
  967. 17.22314,
  968. 21.66464]),4)
  969. def test_keip_zeros(self):
  970. keip = special.keip_zeros(5)
  971. assert_array_almost_equal(keip,array([4.93181,
  972. 9.40405,
  973. 13.85827,
  974. 18.30717,
  975. 22.75379]),4)
  976. # numbers come from 9.9 of A&S pg. 381
  977. def test_kelvin_zeros(self):
  978. tmp = special.kelvin_zeros(5)
  979. berz,beiz,kerz,keiz,berpz,beipz,kerpz,keipz = tmp
  980. assert_array_almost_equal(berz,array([2.84892,
  981. 7.23883,
  982. 11.67396,
  983. 16.11356,
  984. 20.55463]),4)
  985. assert_array_almost_equal(beiz,array([5.02622,
  986. 9.45541,
  987. 13.89349,
  988. 18.33398,
  989. 22.77544]),4)
  990. assert_array_almost_equal(kerz,array([1.71854,
  991. 6.12728,
  992. 10.56294,
  993. 15.00269,
  994. 19.44382]),4)
  995. assert_array_almost_equal(keiz,array([3.91467,
  996. 8.34422,
  997. 12.78256,
  998. 17.22314,
  999. 21.66464]),4)
  1000. assert_array_almost_equal(berpz,array([6.03871,
  1001. 10.51364,
  1002. 14.96844,
  1003. 19.41758,
  1004. 23.86430]),4)
  1005. assert_array_almost_equal(beipz,array([3.77267,
  1006. # table from 1927 had 3.77320
  1007. # but this is more accurate
  1008. 8.28099,
  1009. 12.74215,
  1010. 17.19343,
  1011. 21.64114]),4)
  1012. assert_array_almost_equal(kerpz,array([2.66584,
  1013. 7.17212,
  1014. 11.63218,
  1015. 16.08312,
  1016. 20.53068]),4)
  1017. assert_array_almost_equal(keipz,array([4.93181,
  1018. 9.40405,
  1019. 13.85827,
  1020. 18.30717,
  1021. 22.75379]),4)
  1022. def test_ker_zeros(self):
  1023. ker = special.ker_zeros(5)
  1024. assert_array_almost_equal(ker,array([1.71854,
  1025. 6.12728,
  1026. 10.56294,
  1027. 15.00269,
  1028. 19.44381]),4)
  1029. def test_kerp_zeros(self):
  1030. kerp = special.kerp_zeros(5)
  1031. assert_array_almost_equal(kerp,array([2.66584,
  1032. 7.17212,
  1033. 11.63218,
  1034. 16.08312,
  1035. 20.53068]),4)
  1036. class TestBernoulli(object):
  1037. def test_bernoulli(self):
  1038. brn = special.bernoulli(5)
  1039. assert_array_almost_equal(brn,array([1.0000,
  1040. -0.5000,
  1041. 0.1667,
  1042. 0.0000,
  1043. -0.0333,
  1044. 0.0000]),4)
  1045. class TestBeta(object):
  1046. def test_beta(self):
  1047. bet = special.beta(2,4)
  1048. betg = (special.gamma(2)*special.gamma(4))/special.gamma(6)
  1049. assert_almost_equal(bet,betg,8)
  1050. def test_betaln(self):
  1051. betln = special.betaln(2,4)
  1052. bet = log(abs(special.beta(2,4)))
  1053. assert_almost_equal(betln,bet,8)
  1054. def test_betainc(self):
  1055. btinc = special.betainc(1,1,.2)
  1056. assert_almost_equal(btinc,0.2,8)
  1057. def test_betaincinv(self):
  1058. y = special.betaincinv(2,4,.5)
  1059. comp = special.betainc(2,4,y)
  1060. assert_almost_equal(comp,.5,5)
  1061. class TestCombinatorics(object):
  1062. def test_comb(self):
  1063. assert_array_almost_equal(special.comb([10, 10], [3, 4]), [120., 210.])
  1064. assert_almost_equal(special.comb(10, 3), 120.)
  1065. assert_equal(special.comb(10, 3, exact=True), 120)
  1066. assert_equal(special.comb(10, 3, exact=True, repetition=True), 220)
  1067. assert_allclose([special.comb(20, k, exact=True) for k in range(21)],
  1068. special.comb(20, list(range(21))), atol=1e-15)
  1069. ii = np.iinfo(int).max + 1
  1070. assert_equal(special.comb(ii, ii-1, exact=True), ii)
  1071. expected = 100891344545564193334812497256
  1072. assert_equal(special.comb(100, 50, exact=True), expected)
  1073. def test_comb_with_np_int64(self):
  1074. n = 70
  1075. k = 30
  1076. np_n = np.int64(n)
  1077. np_k = np.int64(k)
  1078. assert_equal(special.comb(np_n, np_k, exact=True),
  1079. special.comb(n, k, exact=True))
  1080. def test_comb_zeros(self):
  1081. assert_equal(special.comb(2, 3, exact=True), 0)
  1082. assert_equal(special.comb(-1, 3, exact=True), 0)
  1083. assert_equal(special.comb(2, -1, exact=True), 0)
  1084. assert_equal(special.comb(2, -1, exact=False), 0)
  1085. assert_array_almost_equal(special.comb([2, -1, 2, 10], [3, 3, -1, 3]),
  1086. [0., 0., 0., 120.])
  1087. def test_perm(self):
  1088. assert_array_almost_equal(special.perm([10, 10], [3, 4]), [720., 5040.])
  1089. assert_almost_equal(special.perm(10, 3), 720.)
  1090. assert_equal(special.perm(10, 3, exact=True), 720)
  1091. def test_perm_zeros(self):
  1092. assert_equal(special.perm(2, 3, exact=True), 0)
  1093. assert_equal(special.perm(-1, 3, exact=True), 0)
  1094. assert_equal(special.perm(2, -1, exact=True), 0)
  1095. assert_equal(special.perm(2, -1, exact=False), 0)
  1096. assert_array_almost_equal(special.perm([2, -1, 2, 10], [3, 3, -1, 3]),
  1097. [0., 0., 0., 720.])
  1098. class TestTrigonometric(object):
  1099. def test_cbrt(self):
  1100. cb = special.cbrt(27)
  1101. cbrl = 27**(1.0/3.0)
  1102. assert_approx_equal(cb,cbrl)
  1103. def test_cbrtmore(self):
  1104. cb1 = special.cbrt(27.9)
  1105. cbrl1 = 27.9**(1.0/3.0)
  1106. assert_almost_equal(cb1,cbrl1,8)
  1107. def test_cosdg(self):
  1108. cdg = special.cosdg(90)
  1109. cdgrl = cos(pi/2.0)
  1110. assert_almost_equal(cdg,cdgrl,8)
  1111. def test_cosdgmore(self):
  1112. cdgm = special.cosdg(30)
  1113. cdgmrl = cos(pi/6.0)
  1114. assert_almost_equal(cdgm,cdgmrl,8)
  1115. def test_cosm1(self):
  1116. cs = (special.cosm1(0),special.cosm1(.3),special.cosm1(pi/10))
  1117. csrl = (cos(0)-1,cos(.3)-1,cos(pi/10)-1)
  1118. assert_array_almost_equal(cs,csrl,8)
  1119. def test_cotdg(self):
  1120. ct = special.cotdg(30)
  1121. ctrl = tan(pi/6.0)**(-1)
  1122. assert_almost_equal(ct,ctrl,8)
  1123. def test_cotdgmore(self):
  1124. ct1 = special.cotdg(45)
  1125. ctrl1 = tan(pi/4.0)**(-1)
  1126. assert_almost_equal(ct1,ctrl1,8)
  1127. def test_specialpoints(self):
  1128. assert_almost_equal(special.cotdg(45), 1.0, 14)
  1129. assert_almost_equal(special.cotdg(-45), -1.0, 14)
  1130. assert_almost_equal(special.cotdg(90), 0.0, 14)
  1131. assert_almost_equal(special.cotdg(-90), 0.0, 14)
  1132. assert_almost_equal(special.cotdg(135), -1.0, 14)
  1133. assert_almost_equal(special.cotdg(-135), 1.0, 14)
  1134. assert_almost_equal(special.cotdg(225), 1.0, 14)
  1135. assert_almost_equal(special.cotdg(-225), -1.0, 14)
  1136. assert_almost_equal(special.cotdg(270), 0.0, 14)
  1137. assert_almost_equal(special.cotdg(-270), 0.0, 14)
  1138. assert_almost_equal(special.cotdg(315), -1.0, 14)
  1139. assert_almost_equal(special.cotdg(-315), 1.0, 14)
  1140. assert_almost_equal(special.cotdg(765), 1.0, 14)
  1141. def test_sinc(self):
  1142. # the sinc implementation and more extensive sinc tests are in numpy
  1143. assert_array_equal(special.sinc([0]), 1)
  1144. assert_equal(special.sinc(0.0), 1.0)
  1145. def test_sindg(self):
  1146. sn = special.sindg(90)
  1147. assert_equal(sn,1.0)
  1148. def test_sindgmore(self):
  1149. snm = special.sindg(30)
  1150. snmrl = sin(pi/6.0)
  1151. assert_almost_equal(snm,snmrl,8)
  1152. snm1 = special.sindg(45)
  1153. snmrl1 = sin(pi/4.0)
  1154. assert_almost_equal(snm1,snmrl1,8)
  1155. class TestTandg(object):
  1156. def test_tandg(self):
  1157. tn = special.tandg(30)
  1158. tnrl = tan(pi/6.0)
  1159. assert_almost_equal(tn,tnrl,8)
  1160. def test_tandgmore(self):
  1161. tnm = special.tandg(45)
  1162. tnmrl = tan(pi/4.0)
  1163. assert_almost_equal(tnm,tnmrl,8)
  1164. tnm1 = special.tandg(60)
  1165. tnmrl1 = tan(pi/3.0)
  1166. assert_almost_equal(tnm1,tnmrl1,8)
  1167. def test_specialpoints(self):
  1168. assert_almost_equal(special.tandg(0), 0.0, 14)
  1169. assert_almost_equal(special.tandg(45), 1.0, 14)
  1170. assert_almost_equal(special.tandg(-45), -1.0, 14)
  1171. assert_almost_equal(special.tandg(135), -1.0, 14)
  1172. assert_almost_equal(special.tandg(-135), 1.0, 14)
  1173. assert_almost_equal(special.tandg(180), 0.0, 14)
  1174. assert_almost_equal(special.tandg(-180), 0.0, 14)
  1175. assert_almost_equal(special.tandg(225), 1.0, 14)
  1176. assert_almost_equal(special.tandg(-225), -1.0, 14)
  1177. assert_almost_equal(special.tandg(315), -1.0, 14)
  1178. assert_almost_equal(special.tandg(-315), 1.0, 14)
  1179. class TestEllip(object):
  1180. def test_ellipj_nan(self):
  1181. """Regression test for #912."""
  1182. special.ellipj(0.5, np.nan)
  1183. def test_ellipj(self):
  1184. el = special.ellipj(0.2,0)
  1185. rel = [sin(0.2),cos(0.2),1.0,0.20]
  1186. assert_array_almost_equal(el,rel,13)
  1187. def test_ellipk(self):
  1188. elk = special.ellipk(.2)
  1189. assert_almost_equal(elk,1.659623598610528,11)
  1190. assert_equal(special.ellipkm1(0.0), np.inf)
  1191. assert_equal(special.ellipkm1(1.0), pi/2)
  1192. assert_equal(special.ellipkm1(np.inf), 0.0)
  1193. assert_equal(special.ellipkm1(np.nan), np.nan)
  1194. assert_equal(special.ellipkm1(-1), np.nan)
  1195. assert_allclose(special.ellipk(-10), 0.7908718902387385)
  1196. def test_ellipkinc(self):
  1197. elkinc = special.ellipkinc(pi/2,.2)
  1198. elk = special.ellipk(0.2)
  1199. assert_almost_equal(elkinc,elk,15)
  1200. alpha = 20*pi/180
  1201. phi = 45*pi/180
  1202. m = sin(alpha)**2
  1203. elkinc = special.ellipkinc(phi,m)
  1204. assert_almost_equal(elkinc,0.79398143,8)
  1205. # From pg. 614 of A & S
  1206. assert_equal(special.ellipkinc(pi/2, 0.0), pi/2)
  1207. assert_equal(special.ellipkinc(pi/2, 1.0), np.inf)
  1208. assert_equal(special.ellipkinc(pi/2, -np.inf), 0.0)
  1209. assert_equal(special.ellipkinc(pi/2, np.nan), np.nan)
  1210. assert_equal(special.ellipkinc(pi/2, 2), np.nan)
  1211. assert_equal(special.ellipkinc(0, 0.5), 0.0)
  1212. assert_equal(special.ellipkinc(np.inf, 0.5), np.inf)
  1213. assert_equal(special.ellipkinc(-np.inf, 0.5), -np.inf)
  1214. assert_equal(special.ellipkinc(np.inf, np.inf), np.nan)
  1215. assert_equal(special.ellipkinc(np.inf, -np.inf), np.nan)
  1216. assert_equal(special.ellipkinc(-np.inf, -np.inf), np.nan)
  1217. assert_equal(special.ellipkinc(-np.inf, np.inf), np.nan)
  1218. assert_equal(special.ellipkinc(np.nan, 0.5), np.nan)
  1219. assert_equal(special.ellipkinc(np.nan, np.nan), np.nan)
  1220. assert_allclose(special.ellipkinc(0.38974112035318718, 1), 0.4, rtol=1e-14)
  1221. assert_allclose(special.ellipkinc(1.5707, -10), 0.79084284661724946)
  1222. def test_ellipkinc_2(self):
  1223. # Regression test for gh-3550
  1224. # ellipkinc(phi, mbad) was NaN and mvals[2:6] were twice the correct value
  1225. mbad = 0.68359375000000011
  1226. phi = 0.9272952180016123
  1227. m = np.nextafter(mbad, 0)
  1228. mvals = []
  1229. for j in range(10):
  1230. mvals.append(m)
  1231. m = np.nextafter(m, 1)
  1232. f = special.ellipkinc(phi, mvals)
  1233. assert_array_almost_equal_nulp(f, 1.0259330100195334 * np.ones_like(f), 1)
  1234. # this bug also appears at phi + n * pi for at least small n
  1235. f1 = special.ellipkinc(phi + pi, mvals)
  1236. assert_array_almost_equal_nulp(f1, 5.1296650500976675 * np.ones_like(f1), 2)
  1237. def test_ellipkinc_singular(self):
  1238. # ellipkinc(phi, 1) has closed form and is finite only for phi in (-pi/2, pi/2)
  1239. xlog = np.logspace(-300, -17, 25)
  1240. xlin = np.linspace(1e-17, 0.1, 25)
  1241. xlin2 = np.linspace(0.1, pi/2, 25, endpoint=False)
  1242. assert_allclose(special.ellipkinc(xlog, 1), np.arcsinh(np.tan(xlog)), rtol=1e14)
  1243. assert_allclose(special.ellipkinc(xlin, 1), np.arcsinh(np.tan(xlin)), rtol=1e14)
  1244. assert_allclose(special.ellipkinc(xlin2, 1), np.arcsinh(np.tan(xlin2)), rtol=1e14)
  1245. assert_equal(special.ellipkinc(np.pi/2, 1), np.inf)
  1246. assert_allclose(special.ellipkinc(-xlog, 1), np.arcsinh(np.tan(-xlog)), rtol=1e14)
  1247. assert_allclose(special.ellipkinc(-xlin, 1), np.arcsinh(np.tan(-xlin)), rtol=1e14)
  1248. assert_allclose(special.ellipkinc(-xlin2, 1), np.arcsinh(np.tan(-xlin2)), rtol=1e14)
  1249. assert_equal(special.ellipkinc(-np.pi/2, 1), np.inf)
  1250. def test_ellipe(self):
  1251. ele = special.ellipe(.2)
  1252. assert_almost_equal(ele,1.4890350580958529,8)
  1253. assert_equal(special.ellipe(0.0), pi/2)
  1254. assert_equal(special.ellipe(1.0), 1.0)
  1255. assert_equal(special.ellipe(-np.inf), np.inf)
  1256. assert_equal(special.ellipe(np.nan), np.nan)
  1257. assert_equal(special.ellipe(2), np.nan)
  1258. assert_allclose(special.ellipe(-10), 3.6391380384177689)
  1259. def test_ellipeinc(self):
  1260. eleinc = special.ellipeinc(pi/2,.2)
  1261. ele = special.ellipe(0.2)
  1262. assert_almost_equal(eleinc,ele,14)
  1263. # pg 617 of A & S
  1264. alpha, phi = 52*pi/180,35*pi/180
  1265. m = sin(alpha)**2
  1266. eleinc = special.ellipeinc(phi,m)
  1267. assert_almost_equal(eleinc, 0.58823065, 8)
  1268. assert_equal(special.ellipeinc(pi/2, 0.0), pi/2)
  1269. assert_equal(special.ellipeinc(pi/2, 1.0), 1.0)
  1270. assert_equal(special.ellipeinc(pi/2, -np.inf), np.inf)
  1271. assert_equal(special.ellipeinc(pi/2, np.nan), np.nan)
  1272. assert_equal(special.ellipeinc(pi/2, 2), np.nan)
  1273. assert_equal(special.ellipeinc(0, 0.5), 0.0)
  1274. assert_equal(special.ellipeinc(np.inf, 0.5), np.inf)
  1275. assert_equal(special.ellipeinc(-np.inf, 0.5), -np.inf)
  1276. assert_equal(special.ellipeinc(np.inf, -np.inf), np.inf)
  1277. assert_equal(special.ellipeinc(-np.inf, -np.inf), -np.inf)
  1278. assert_equal(special.ellipeinc(np.inf, np.inf), np.nan)
  1279. assert_equal(special.ellipeinc(-np.inf, np.inf), np.nan)
  1280. assert_equal(special.ellipeinc(np.nan, 0.5), np.nan)
  1281. assert_equal(special.ellipeinc(np.nan, np.nan), np.nan)
  1282. assert_allclose(special.ellipeinc(1.5707, -10), 3.6388185585822876)
  1283. def test_ellipeinc_2(self):
  1284. # Regression test for gh-3550
  1285. # ellipeinc(phi, mbad) was NaN and mvals[2:6] were twice the correct value
  1286. mbad = 0.68359375000000011
  1287. phi = 0.9272952180016123
  1288. m = np.nextafter(mbad, 0)
  1289. mvals = []
  1290. for j in range(10):
  1291. mvals.append(m)
  1292. m = np.nextafter(m, 1)
  1293. f = special.ellipeinc(phi, mvals)
  1294. assert_array_almost_equal_nulp(f, 0.84442884574781019 * np.ones_like(f), 2)
  1295. # this bug also appears at phi + n * pi for at least small n
  1296. f1 = special.ellipeinc(phi + pi, mvals)
  1297. assert_array_almost_equal_nulp(f1, 3.3471442287390509 * np.ones_like(f1), 4)
  1298. class TestErf(object):
  1299. def test_erf(self):
  1300. er = special.erf(.25)
  1301. assert_almost_equal(er,0.2763263902,8)
  1302. def test_erf_zeros(self):
  1303. erz = special.erf_zeros(5)
  1304. erzr = array([1.45061616+1.88094300j,
  1305. 2.24465928+2.61657514j,
  1306. 2.83974105+3.17562810j,
  1307. 3.33546074+3.64617438j,
  1308. 3.76900557+4.06069723j])
  1309. assert_array_almost_equal(erz,erzr,4)
  1310. def _check_variant_func(self, func, other_func, rtol, atol=0):
  1311. np.random.seed(1234)
  1312. n = 10000
  1313. x = np.random.pareto(0.02, n) * (2*np.random.randint(0, 2, n) - 1)
  1314. y = np.random.pareto(0.02, n) * (2*np.random.randint(0, 2, n) - 1)
  1315. z = x + 1j*y
  1316. old_errors = np.seterr(all='ignore')
  1317. try:
  1318. w = other_func(z)
  1319. w_real = other_func(x).real
  1320. mask = np.isfinite(w)
  1321. w = w[mask]
  1322. z = z[mask]
  1323. mask = np.isfinite(w_real)
  1324. w_real = w_real[mask]
  1325. x = x[mask]
  1326. # test both real and complex variants
  1327. assert_func_equal(func, w, z, rtol=rtol, atol=atol)
  1328. assert_func_equal(func, w_real, x, rtol=rtol, atol=atol)
  1329. finally:
  1330. np.seterr(**old_errors)
  1331. def test_erfc_consistent(self):
  1332. self._check_variant_func(
  1333. cephes.erfc,
  1334. lambda z: 1 - cephes.erf(z),
  1335. rtol=1e-12,
  1336. atol=1e-14 # <- the test function loses precision
  1337. )
  1338. def test_erfcx_consistent(self):
  1339. self._check_variant_func(
  1340. cephes.erfcx,
  1341. lambda z: np.exp(z*z) * cephes.erfc(z),
  1342. rtol=1e-12
  1343. )
  1344. def test_erfi_consistent(self):
  1345. self._check_variant_func(
  1346. cephes.erfi,
  1347. lambda z: -1j * cephes.erf(1j*z),
  1348. rtol=1e-12
  1349. )
  1350. def test_dawsn_consistent(self):
  1351. self._check_variant_func(
  1352. cephes.dawsn,
  1353. lambda z: sqrt(pi)/2 * np.exp(-z*z) * cephes.erfi(z),
  1354. rtol=1e-12
  1355. )
  1356. def test_erfcinv(self):
  1357. i = special.erfcinv(1)
  1358. # Use assert_array_equal instead of assert_equal, so the comparison
  1359. # of -0.0 and 0.0 doesn't fail.
  1360. assert_array_equal(i, 0)
  1361. def test_erfinv(self):
  1362. i = special.erfinv(0)
  1363. assert_equal(i,0)
  1364. def test_erf_nan_inf(self):
  1365. vals = [np.nan, -np.inf, np.inf]
  1366. expected = [np.nan, -1, 1]
  1367. assert_allclose(special.erf(vals), expected, rtol=1e-15)
  1368. def test_erfc_nan_inf(self):
  1369. vals = [np.nan, -np.inf, np.inf]
  1370. expected = [np.nan, 2, 0]
  1371. assert_allclose(special.erfc(vals), expected, rtol=1e-15)
  1372. def test_erfcx_nan_inf(self):
  1373. vals = [np.nan, -np.inf, np.inf]
  1374. expected = [np.nan, np.inf, 0]
  1375. assert_allclose(special.erfcx(vals), expected, rtol=1e-15)
  1376. def test_erfi_nan_inf(self):
  1377. vals = [np.nan, -np.inf, np.inf]
  1378. expected = [np.nan, -np.inf, np.inf]
  1379. assert_allclose(special.erfi(vals), expected, rtol=1e-15)
  1380. def test_dawsn_nan_inf(self):
  1381. vals = [np.nan, -np.inf, np.inf]
  1382. expected = [np.nan, -0.0, 0.0]
  1383. assert_allclose(special.dawsn(vals), expected, rtol=1e-15)
  1384. def test_wofz_nan_inf(self):
  1385. vals = [np.nan, -np.inf, np.inf]
  1386. expected = [np.nan + np.nan * 1.j, 0.-0.j, 0.+0.j]
  1387. assert_allclose(special.wofz(vals), expected, rtol=1e-15)
  1388. class TestEuler(object):
  1389. def test_euler(self):
  1390. eu0 = special.euler(0)
  1391. eu1 = special.euler(1)
  1392. eu2 = special.euler(2) # just checking segfaults
  1393. assert_allclose(eu0, [1], rtol=1e-15)
  1394. assert_allclose(eu1, [1, 0], rtol=1e-15)
  1395. assert_allclose(eu2, [1, 0, -1], rtol=1e-15)
  1396. eu24 = special.euler(24)
  1397. mathworld = [1,1,5,61,1385,50521,2702765,199360981,
  1398. 19391512145,2404879675441,
  1399. 370371188237525,69348874393137901,
  1400. 15514534163557086905]
  1401. correct = zeros((25,),'d')
  1402. for k in range(0,13):
  1403. if (k % 2):
  1404. correct[2*k] = -float(mathworld[k])
  1405. else:
  1406. correct[2*k] = float(mathworld[k])
  1407. olderr = np.seterr(all='ignore')
  1408. try:
  1409. err = nan_to_num((eu24-correct)/correct)
  1410. errmax = max(err)
  1411. finally:
  1412. np.seterr(**olderr)
  1413. assert_almost_equal(errmax, 0.0, 14)
  1414. class TestExp(object):
  1415. def test_exp2(self):
  1416. ex = special.exp2(2)
  1417. exrl = 2**2
  1418. assert_equal(ex,exrl)
  1419. def test_exp2more(self):
  1420. exm = special.exp2(2.5)
  1421. exmrl = 2**(2.5)
  1422. assert_almost_equal(exm,exmrl,8)
  1423. def test_exp10(self):
  1424. ex = special.exp10(2)
  1425. exrl = 10**2
  1426. assert_approx_equal(ex,exrl)
  1427. def test_exp10more(self):
  1428. exm = special.exp10(2.5)
  1429. exmrl = 10**(2.5)
  1430. assert_almost_equal(exm,exmrl,8)
  1431. def test_expm1(self):
  1432. ex = (special.expm1(2),special.expm1(3),special.expm1(4))
  1433. exrl = (exp(2)-1,exp(3)-1,exp(4)-1)
  1434. assert_array_almost_equal(ex,exrl,8)
  1435. def test_expm1more(self):
  1436. ex1 = (special.expm1(2),special.expm1(2.1),special.expm1(2.2))
  1437. exrl1 = (exp(2)-1,exp(2.1)-1,exp(2.2)-1)
  1438. assert_array_almost_equal(ex1,exrl1,8)
  1439. class TestFactorialFunctions(object):
  1440. def test_factorial(self):
  1441. # Some known values, float math
  1442. assert_array_almost_equal(special.factorial(0), 1)
  1443. assert_array_almost_equal(special.factorial(1), 1)
  1444. assert_array_almost_equal(special.factorial(2), 2)
  1445. assert_array_almost_equal([6., 24., 120.],
  1446. special.factorial([3, 4, 5], exact=False))
  1447. assert_array_almost_equal(special.factorial([[5, 3], [4, 3]]),
  1448. [[120, 6], [24, 6]])
  1449. # Some known values, integer math
  1450. assert_equal(special.factorial(0, exact=True), 1)
  1451. assert_equal(special.factorial(1, exact=True), 1)
  1452. assert_equal(special.factorial(2, exact=True), 2)
  1453. assert_equal(special.factorial(5, exact=True), 120)
  1454. assert_equal(special.factorial(15, exact=True), 1307674368000)
  1455. # ndarray shape is maintained
  1456. assert_equal(special.factorial([7, 4, 15, 10], exact=True),
  1457. [5040, 24, 1307674368000, 3628800])
  1458. assert_equal(special.factorial([[5, 3], [4, 3]], True),
  1459. [[120, 6], [24, 6]])
  1460. # object arrays
  1461. assert_equal(special.factorial(np.arange(-3, 22), True),
  1462. special.factorial(np.arange(-3, 22), False))
  1463. # int64 array
  1464. assert_equal(special.factorial(np.arange(-3, 15), True),
  1465. special.factorial(np.arange(-3, 15), False))
  1466. # int32 array
  1467. assert_equal(special.factorial(np.arange(-3, 5), True),
  1468. special.factorial(np.arange(-3, 5), False))
  1469. # Consistent output for n < 0
  1470. for exact in (True, False):
  1471. assert_array_equal(0, special.factorial(-3, exact))
  1472. assert_array_equal([1, 2, 0, 0],
  1473. special.factorial([1, 2, -5, -4], exact))
  1474. for n in range(0, 22):
  1475. # Compare all with math.factorial
  1476. correct = math.factorial(n)
  1477. assert_array_equal(correct, special.factorial(n, True))
  1478. assert_array_equal(correct, special.factorial([n], True)[0])
  1479. assert_allclose(float(correct), special.factorial(n, False))
  1480. assert_allclose(float(correct), special.factorial([n], False)[0])
  1481. # Compare exact=True vs False, scalar vs array
  1482. assert_array_equal(special.factorial(n, True),
  1483. special.factorial(n, False))
  1484. assert_array_equal(special.factorial([n], True),
  1485. special.factorial([n], False))
  1486. def test_factorial2(self):
  1487. assert_array_almost_equal([105., 384., 945.],
  1488. special.factorial2([7, 8, 9], exact=False))
  1489. assert_equal(special.factorial2(7, exact=True), 105)
  1490. def test_factorialk(self):
  1491. assert_equal(special.factorialk(5, 1, exact=True), 120)
  1492. assert_equal(special.factorialk(5, 3, exact=True), 10)
  1493. class TestFresnel(object):
  1494. def test_fresnel(self):
  1495. frs = array(special.fresnel(.5))
  1496. assert_array_almost_equal(frs,array([0.064732432859999287, 0.49234422587144644]),8)
  1497. def test_fresnel_inf1(self):
  1498. frs = special.fresnel(np.inf)
  1499. assert_equal(frs, (0.5, 0.5))
  1500. def test_fresnel_inf2(self):
  1501. frs = special.fresnel(-np.inf)
  1502. assert_equal(frs, (-0.5, -0.5))
  1503. # values from pg 329 Table 7.11 of A & S
  1504. # slightly corrected in 4th decimal place
  1505. def test_fresnel_zeros(self):
  1506. szo, czo = special.fresnel_zeros(5)
  1507. assert_array_almost_equal(szo,
  1508. array([2.0093+0.2885j,
  1509. 2.8335+0.2443j,
  1510. 3.4675+0.2185j,
  1511. 4.0026+0.2009j,
  1512. 4.4742+0.1877j]),3)
  1513. assert_array_almost_equal(czo,
  1514. array([1.7437+0.3057j,
  1515. 2.6515+0.2529j,
  1516. 3.3204+0.2240j,
  1517. 3.8757+0.2047j,
  1518. 4.3611+0.1907j]),3)
  1519. vals1 = special.fresnel(szo)[0]
  1520. vals2 = special.fresnel(czo)[1]
  1521. assert_array_almost_equal(vals1,0,14)
  1522. assert_array_almost_equal(vals2,0,14)
  1523. def test_fresnelc_zeros(self):
  1524. szo, czo = special.fresnel_zeros(6)
  1525. frc = special.fresnelc_zeros(6)
  1526. assert_array_almost_equal(frc,czo,12)
  1527. def test_fresnels_zeros(self):
  1528. szo, czo = special.fresnel_zeros(5)
  1529. frs = special.fresnels_zeros(5)
  1530. assert_array_almost_equal(frs,szo,12)
  1531. class TestGamma(object):
  1532. def test_gamma(self):
  1533. gam = special.gamma(5)
  1534. assert_equal(gam,24.0)
  1535. def test_gammaln(self):
  1536. gamln = special.gammaln(3)
  1537. lngam = log(special.gamma(3))
  1538. assert_almost_equal(gamln,lngam,8)
  1539. def test_gammainc(self):
  1540. gama = special.gammainc(.5,.5)
  1541. assert_almost_equal(gama,.7,1)
  1542. def test_gammaincnan(self):
  1543. gama = special.gammainc(-1,1)
  1544. assert_(isnan(gama))
  1545. def test_gammainczero(self):
  1546. # bad arg but zero integration limit
  1547. gama = special.gammainc(-1,0)
  1548. assert_equal(gama,0.0)
  1549. def test_gammaincinf(self):
  1550. gama = special.gammainc(0.5, np.inf)
  1551. assert_equal(gama,1.0)
  1552. def test_gammaincc(self):
  1553. gicc = special.gammaincc(.5,.5)
  1554. greal = 1 - special.gammainc(.5,.5)
  1555. assert_almost_equal(gicc,greal,8)
  1556. def test_gammainccnan(self):
  1557. gama = special.gammaincc(-1,1)
  1558. assert_(isnan(gama))
  1559. def test_gammainccinf(self):
  1560. gama = special.gammaincc(0.5,np.inf)
  1561. assert_equal(gama,0.0)
  1562. def test_gammainccinv(self):
  1563. gccinv = special.gammainccinv(.5,.5)
  1564. gcinv = special.gammaincinv(.5,.5)
  1565. assert_almost_equal(gccinv,gcinv,8)
  1566. @with_special_errors
  1567. def test_gammaincinv(self):
  1568. y = special.gammaincinv(.4,.4)
  1569. x = special.gammainc(.4,y)
  1570. assert_almost_equal(x,0.4,1)
  1571. y = special.gammainc(10, 0.05)
  1572. x = special.gammaincinv(10, 2.5715803516000736e-20)
  1573. assert_almost_equal(0.05, x, decimal=10)
  1574. assert_almost_equal(y, 2.5715803516000736e-20, decimal=10)
  1575. x = special.gammaincinv(50, 8.20754777388471303050299243573393e-18)
  1576. assert_almost_equal(11.0, x, decimal=10)
  1577. @with_special_errors
  1578. def test_975(self):
  1579. # Regression test for ticket #975 -- switch point in algorithm
  1580. # check that things work OK at the point, immediately next floats
  1581. # around it, and a bit further away
  1582. pts = [0.25,
  1583. np.nextafter(0.25, 0), 0.25 - 1e-12,
  1584. np.nextafter(0.25, 1), 0.25 + 1e-12]
  1585. for xp in pts:
  1586. y = special.gammaincinv(.4, xp)
  1587. x = special.gammainc(0.4, y)
  1588. assert_allclose(x, xp, rtol=1e-12)
  1589. def test_rgamma(self):
  1590. rgam = special.rgamma(8)
  1591. rlgam = 1/special.gamma(8)
  1592. assert_almost_equal(rgam,rlgam,8)
  1593. def test_infinity(self):
  1594. assert_(np.isinf(special.gamma(-1)))
  1595. assert_equal(special.rgamma(-1), 0)
  1596. class TestHankel(object):
  1597. def test_negv1(self):
  1598. assert_almost_equal(special.hankel1(-3,2), -special.hankel1(3,2), 14)
  1599. def test_hankel1(self):
  1600. hank1 = special.hankel1(1,.1)
  1601. hankrl = (special.jv(1,.1) + special.yv(1,.1)*1j)
  1602. assert_almost_equal(hank1,hankrl,8)
  1603. def test_negv1e(self):
  1604. assert_almost_equal(special.hankel1e(-3,2), -special.hankel1e(3,2), 14)
  1605. def test_hankel1e(self):
  1606. hank1e = special.hankel1e(1,.1)
  1607. hankrle = special.hankel1(1,.1)*exp(-.1j)
  1608. assert_almost_equal(hank1e,hankrle,8)
  1609. def test_negv2(self):
  1610. assert_almost_equal(special.hankel2(-3,2), -special.hankel2(3,2), 14)
  1611. def test_hankel2(self):
  1612. hank2 = special.hankel2(1,.1)
  1613. hankrl2 = (special.jv(1,.1) - special.yv(1,.1)*1j)
  1614. assert_almost_equal(hank2,hankrl2,8)
  1615. def test_neg2e(self):
  1616. assert_almost_equal(special.hankel2e(-3,2), -special.hankel2e(3,2), 14)
  1617. def test_hankl2e(self):
  1618. hank2e = special.hankel2e(1,.1)
  1619. hankrl2e = special.hankel2e(1,.1)
  1620. assert_almost_equal(hank2e,hankrl2e,8)
  1621. class TestHyper(object):
  1622. def test_h1vp(self):
  1623. h1 = special.h1vp(1,.1)
  1624. h1real = (special.jvp(1,.1) + special.yvp(1,.1)*1j)
  1625. assert_almost_equal(h1,h1real,8)
  1626. def test_h2vp(self):
  1627. h2 = special.h2vp(1,.1)
  1628. h2real = (special.jvp(1,.1) - special.yvp(1,.1)*1j)
  1629. assert_almost_equal(h2,h2real,8)
  1630. def test_hyp0f1(self):
  1631. # scalar input
  1632. assert_allclose(special.hyp0f1(2.5, 0.5), 1.21482702689997, rtol=1e-12)
  1633. assert_allclose(special.hyp0f1(2.5, 0), 1.0, rtol=1e-15)
  1634. # float input, expected values match mpmath
  1635. x = special.hyp0f1(3.0, [-1.5, -1, 0, 1, 1.5])
  1636. expected = np.array([0.58493659229143, 0.70566805723127, 1.0,
  1637. 1.37789689539747, 1.60373685288480])
  1638. assert_allclose(x, expected, rtol=1e-12)
  1639. # complex input
  1640. x = special.hyp0f1(3.0, np.array([-1.5, -1, 0, 1, 1.5]) + 0.j)
  1641. assert_allclose(x, expected.astype(complex), rtol=1e-12)
  1642. # test broadcasting
  1643. x1 = [0.5, 1.5, 2.5]
  1644. x2 = [0, 1, 0.5]
  1645. x = special.hyp0f1(x1, x2)
  1646. expected = [1.0, 1.8134302039235093, 1.21482702689997]
  1647. assert_allclose(x, expected, rtol=1e-12)
  1648. x = special.hyp0f1(np.row_stack([x1] * 2), x2)
  1649. assert_allclose(x, np.row_stack([expected] * 2), rtol=1e-12)
  1650. assert_raises(ValueError, special.hyp0f1,
  1651. np.row_stack([x1] * 3), [0, 1])
  1652. def test_hyp0f1_gh5764(self):
  1653. # Just checks the point that failed; there's a more systematic
  1654. # test in test_mpmath
  1655. res = special.hyp0f1(0.8, 0.5 + 0.5*1J)
  1656. # The expected value was generated using mpmath
  1657. assert_almost_equal(res, 1.6139719776441115 + 1J*0.80893054061790665)
  1658. def test_hyp1f1(self):
  1659. hyp1 = special.hyp1f1(.1,.1,.3)
  1660. assert_almost_equal(hyp1, 1.3498588075760032,7)
  1661. # test contributed by Moritz Deger (2008-05-29)
  1662. # https://github.com/scipy/scipy/issues/1186 (Trac #659)
  1663. # reference data obtained from mathematica [ a, b, x, m(a,b,x)]:
  1664. # produced with test_hyp1f1.nb
  1665. ref_data = array([[-8.38132975e+00, -1.28436461e+01, -2.91081397e+01, 1.04178330e+04],
  1666. [2.91076882e+00, -6.35234333e+00, -1.27083993e+01, 6.68132725e+00],
  1667. [-1.42938258e+01, 1.80869131e-01, 1.90038728e+01, 1.01385897e+05],
  1668. [5.84069088e+00, 1.33187908e+01, 2.91290106e+01, 1.59469411e+08],
  1669. [-2.70433202e+01, -1.16274873e+01, -2.89582384e+01, 1.39900152e+24],
  1670. [4.26344966e+00, -2.32701773e+01, 1.91635759e+01, 6.13816915e+21],
  1671. [1.20514340e+01, -3.40260240e+00, 7.26832235e+00, 1.17696112e+13],
  1672. [2.77372955e+01, -1.99424687e+00, 3.61332246e+00, 3.07419615e+13],
  1673. [1.50310939e+01, -2.91198675e+01, -1.53581080e+01, -3.79166033e+02],
  1674. [1.43995827e+01, 9.84311196e+00, 1.93204553e+01, 2.55836264e+10],
  1675. [-4.08759686e+00, 1.34437025e+01, -1.42072843e+01, 1.70778449e+01],
  1676. [8.05595738e+00, -1.31019838e+01, 1.52180721e+01, 3.06233294e+21],
  1677. [1.81815804e+01, -1.42908793e+01, 9.57868793e+00, -2.84771348e+20],
  1678. [-2.49671396e+01, 1.25082843e+01, -1.71562286e+01, 2.36290426e+07],
  1679. [2.67277673e+01, 1.70315414e+01, 6.12701450e+00, 7.77917232e+03],
  1680. [2.49565476e+01, 2.91694684e+01, 6.29622660e+00, 2.35300027e+02],
  1681. [6.11924542e+00, -1.59943768e+00, 9.57009289e+00, 1.32906326e+11],
  1682. [-1.47863653e+01, 2.41691301e+01, -1.89981821e+01, 2.73064953e+03],
  1683. [2.24070483e+01, -2.93647433e+00, 8.19281432e+00, -6.42000372e+17],
  1684. [8.04042600e-01, 1.82710085e+01, -1.97814534e+01, 5.48372441e-01],
  1685. [1.39590390e+01, 1.97318686e+01, 2.37606635e+00, 5.51923681e+00],
  1686. [-4.66640483e+00, -2.00237930e+01, 7.40365095e+00, 4.50310752e+00],
  1687. [2.76821999e+01, -6.36563968e+00, 1.11533984e+01, -9.28725179e+23],
  1688. [-2.56764457e+01, 1.24544906e+00, 1.06407572e+01, 1.25922076e+01],
  1689. [3.20447808e+00, 1.30874383e+01, 2.26098014e+01, 2.03202059e+04],
  1690. [-1.24809647e+01, 4.15137113e+00, -2.92265700e+01, 2.39621411e+08],
  1691. [2.14778108e+01, -2.35162960e+00, -1.13758664e+01, 4.46882152e-01],
  1692. [-9.85469168e+00, -3.28157680e+00, 1.67447548e+01, -1.07342390e+07],
  1693. [1.08122310e+01, -2.47353236e+01, -1.15622349e+01, -2.91733796e+03],
  1694. [-2.67933347e+01, -3.39100709e+00, 2.56006986e+01, -5.29275382e+09],
  1695. [-8.60066776e+00, -8.02200924e+00, 1.07231926e+01, 1.33548320e+06],
  1696. [-1.01724238e-01, -1.18479709e+01, -2.55407104e+01, 1.55436570e+00],
  1697. [-3.93356771e+00, 2.11106818e+01, -2.57598485e+01, 2.13467840e+01],
  1698. [3.74750503e+00, 1.55687633e+01, -2.92841720e+01, 1.43873509e-02],
  1699. [6.99726781e+00, 2.69855571e+01, -1.63707771e+01, 3.08098673e-02],
  1700. [-2.31996011e+01, 3.47631054e+00, 9.75119815e-01, 1.79971073e-02],
  1701. [2.38951044e+01, -2.91460190e+01, -2.50774708e+00, 9.56934814e+00],
  1702. [1.52730825e+01, 5.77062507e+00, 1.21922003e+01, 1.32345307e+09],
  1703. [1.74673917e+01, 1.89723426e+01, 4.94903250e+00, 9.90859484e+01],
  1704. [1.88971241e+01, 2.86255413e+01, 5.52360109e-01, 1.44165360e+00],
  1705. [1.02002319e+01, -1.66855152e+01, -2.55426235e+01, 6.56481554e+02],
  1706. [-1.79474153e+01, 1.22210200e+01, -1.84058212e+01, 8.24041812e+05],
  1707. [-1.36147103e+01, 1.32365492e+00, -7.22375200e+00, 9.92446491e+05],
  1708. [7.57407832e+00, 2.59738234e+01, -1.34139168e+01, 3.64037761e-02],
  1709. [2.21110169e+00, 1.28012666e+01, 1.62529102e+01, 1.33433085e+02],
  1710. [-2.64297569e+01, -1.63176658e+01, -1.11642006e+01, -2.44797251e+13],
  1711. [-2.46622944e+01, -3.02147372e+00, 8.29159315e+00, -3.21799070e+05],
  1712. [-1.37215095e+01, -1.96680183e+01, 2.91940118e+01, 3.21457520e+12],
  1713. [-5.45566105e+00, 2.81292086e+01, 1.72548215e-01, 9.66973000e-01],
  1714. [-1.55751298e+00, -8.65703373e+00, 2.68622026e+01, -3.17190834e+16],
  1715. [2.45393609e+01, -2.70571903e+01, 1.96815505e+01, 1.80708004e+37],
  1716. [5.77482829e+00, 1.53203143e+01, 2.50534322e+01, 1.14304242e+06],
  1717. [-1.02626819e+01, 2.36887658e+01, -2.32152102e+01, 7.28965646e+02],
  1718. [-1.30833446e+00, -1.28310210e+01, 1.87275544e+01, -9.33487904e+12],
  1719. [5.83024676e+00, -1.49279672e+01, 2.44957538e+01, -7.61083070e+27],
  1720. [-2.03130747e+01, 2.59641715e+01, -2.06174328e+01, 4.54744859e+04],
  1721. [1.97684551e+01, -2.21410519e+01, -2.26728740e+01, 3.53113026e+06],
  1722. [2.73673444e+01, 2.64491725e+01, 1.57599882e+01, 1.07385118e+07],
  1723. [5.73287971e+00, 1.21111904e+01, 1.33080171e+01, 2.63220467e+03],
  1724. [-2.82751072e+01, 2.08605881e+01, 9.09838900e+00, -6.60957033e-07],
  1725. [1.87270691e+01, -1.74437016e+01, 1.52413599e+01, 6.59572851e+27],
  1726. [6.60681457e+00, -2.69449855e+00, 9.78972047e+00, -2.38587870e+12],
  1727. [1.20895561e+01, -2.51355765e+01, 2.30096101e+01, 7.58739886e+32],
  1728. [-2.44682278e+01, 2.10673441e+01, -1.36705538e+01, 4.54213550e+04],
  1729. [-4.50665152e+00, 3.72292059e+00, -4.83403707e+00, 2.68938214e+01],
  1730. [-7.46540049e+00, -1.08422222e+01, -1.72203805e+01, -2.09402162e+02],
  1731. [-2.00307551e+01, -7.50604431e+00, -2.78640020e+01, 4.15985444e+19],
  1732. [1.99890876e+01, 2.20677419e+01, -2.51301778e+01, 1.23840297e-09],
  1733. [2.03183823e+01, -7.66942559e+00, 2.10340070e+01, 1.46285095e+31],
  1734. [-2.90315825e+00, -2.55785967e+01, -9.58779316e+00, 2.65714264e-01],
  1735. [2.73960829e+01, -1.80097203e+01, -2.03070131e+00, 2.52908999e+02],
  1736. [-2.11708058e+01, -2.70304032e+01, 2.48257944e+01, 3.09027527e+08],
  1737. [2.21959758e+01, 4.00258675e+00, -1.62853977e+01, -9.16280090e-09],
  1738. [1.61661840e+01, -2.26845150e+01, 2.17226940e+01, -8.24774394e+33],
  1739. [-3.35030306e+00, 1.32670581e+00, 9.39711214e+00, -1.47303163e+01],
  1740. [7.23720726e+00, -2.29763909e+01, 2.34709682e+01, -9.20711735e+29],
  1741. [2.71013568e+01, 1.61951087e+01, -7.11388906e-01, 2.98750911e-01],
  1742. [8.40057933e+00, -7.49665220e+00, 2.95587388e+01, 6.59465635e+29],
  1743. [-1.51603423e+01, 1.94032322e+01, -7.60044357e+00, 1.05186941e+02],
  1744. [-8.83788031e+00, -2.72018313e+01, 1.88269907e+00, 1.81687019e+00],
  1745. [-1.87283712e+01, 5.87479570e+00, -1.91210203e+01, 2.52235612e+08],
  1746. [-5.61338513e-01, 2.69490237e+01, 1.16660111e-01, 9.97567783e-01],
  1747. [-5.44354025e+00, -1.26721408e+01, -4.66831036e+00, 1.06660735e-01],
  1748. [-2.18846497e+00, 2.33299566e+01, 9.62564397e+00, 3.03842061e-01],
  1749. [6.65661299e+00, -2.39048713e+01, 1.04191807e+01, 4.73700451e+13],
  1750. [-2.57298921e+01, -2.60811296e+01, 2.74398110e+01, -5.32566307e+11],
  1751. [-1.11431826e+01, -1.59420160e+01, -1.84880553e+01, -1.01514747e+02],
  1752. [6.50301931e+00, 2.59859051e+01, -2.33270137e+01, 1.22760500e-02],
  1753. [-1.94987891e+01, -2.62123262e+01, 3.90323225e+00, 1.71658894e+01],
  1754. [7.26164601e+00, -1.41469402e+01, 2.81499763e+01, -2.50068329e+31],
  1755. [-1.52424040e+01, 2.99719005e+01, -2.85753678e+01, 1.31906693e+04],
  1756. [5.24149291e+00, -1.72807223e+01, 2.22129493e+01, 2.50748475e+25],
  1757. [3.63207230e-01, -9.54120862e-02, -2.83874044e+01, 9.43854939e-01],
  1758. [-2.11326457e+00, -1.25707023e+01, 1.17172130e+00, 1.20812698e+00],
  1759. [2.48513582e+00, 1.03652647e+01, -1.84625148e+01, 6.47910997e-02],
  1760. [2.65395942e+01, 2.74794672e+01, 1.29413428e+01, 2.89306132e+05],
  1761. [-9.49445460e+00, 1.59930921e+01, -1.49596331e+01, 3.27574841e+02],
  1762. [-5.89173945e+00, 9.96742426e+00, 2.60318889e+01, -3.15842908e-01],
  1763. [-1.15387239e+01, -2.21433107e+01, -2.17686413e+01, 1.56724718e-01],
  1764. [-5.30592244e+00, -2.42752190e+01, 1.29734035e+00, 1.31985534e+00]])
  1765. for a,b,c,expected in ref_data:
  1766. result = special.hyp1f1(a,b,c)
  1767. assert_(abs(expected - result)/expected < 1e-4)
  1768. def test_hyp1f1_gh2957(self):
  1769. hyp1 = special.hyp1f1(0.5, 1.5, -709.7827128933)
  1770. hyp2 = special.hyp1f1(0.5, 1.5, -709.7827128934)
  1771. assert_almost_equal(hyp1, hyp2, 12)
  1772. def test_hyp1f1_gh2282(self):
  1773. hyp = special.hyp1f1(0.5, 1.5, -1000)
  1774. assert_almost_equal(hyp, 0.028024956081989643, 12)
  1775. def test_hyp2f1(self):
  1776. # a collection of special cases taken from AMS 55
  1777. values = [[0.5, 1, 1.5, 0.2**2, 0.5/0.2*log((1+0.2)/(1-0.2))],
  1778. [0.5, 1, 1.5, -0.2**2, 1./0.2*arctan(0.2)],
  1779. [1, 1, 2, 0.2, -1/0.2*log(1-0.2)],
  1780. [3, 3.5, 1.5, 0.2**2,
  1781. 0.5/0.2/(-5)*((1+0.2)**(-5)-(1-0.2)**(-5))],
  1782. [-3, 3, 0.5, sin(0.2)**2, cos(2*3*0.2)],
  1783. [3, 4, 8, 1, special.gamma(8)*special.gamma(8-4-3)/special.gamma(8-3)/special.gamma(8-4)],
  1784. [3, 2, 3-2+1, -1, 1./2**3*sqrt(pi) *
  1785. special.gamma(1+3-2)/special.gamma(1+0.5*3-2)/special.gamma(0.5+0.5*3)],
  1786. [5, 2, 5-2+1, -1, 1./2**5*sqrt(pi) *
  1787. special.gamma(1+5-2)/special.gamma(1+0.5*5-2)/special.gamma(0.5+0.5*5)],
  1788. [4, 0.5+4, 1.5-2*4, -1./3, (8./9)**(-2*4)*special.gamma(4./3) *
  1789. special.gamma(1.5-2*4)/special.gamma(3./2)/special.gamma(4./3-2*4)],
  1790. # and some others
  1791. # ticket #424
  1792. [1.5, -0.5, 1.0, -10.0, 4.1300097765277476484],
  1793. # negative integer a or b, with c-a-b integer and x > 0.9
  1794. [-2,3,1,0.95,0.715],
  1795. [2,-3,1,0.95,-0.007],
  1796. [-6,3,1,0.95,0.0000810625],
  1797. [2,-5,1,0.95,-0.000029375],
  1798. # huge negative integers
  1799. (10, -900, 10.5, 0.99, 1.91853705796607664803709475658e-24),
  1800. (10, -900, -10.5, 0.99, 3.54279200040355710199058559155e-18),
  1801. ]
  1802. for i, (a, b, c, x, v) in enumerate(values):
  1803. cv = special.hyp2f1(a, b, c, x)
  1804. assert_almost_equal(cv, v, 8, err_msg='test #%d' % i)
  1805. def test_hyperu(self):
  1806. val1 = special.hyperu(1,0.1,100)
  1807. assert_almost_equal(val1,0.0098153,7)
  1808. a,b = [0.3,0.6,1.2,-2.7],[1.5,3.2,-0.4,-3.2]
  1809. a,b = asarray(a), asarray(b)
  1810. z = 0.5
  1811. hypu = special.hyperu(a,b,z)
  1812. hprl = (pi/sin(pi*b))*(special.hyp1f1(a,b,z) /
  1813. (special.gamma(1+a-b)*special.gamma(b)) -
  1814. z**(1-b)*special.hyp1f1(1+a-b,2-b,z)
  1815. / (special.gamma(a)*special.gamma(2-b)))
  1816. assert_array_almost_equal(hypu,hprl,12)
  1817. def test_hyperu_gh2287(self):
  1818. assert_almost_equal(special.hyperu(1, 1.5, 20.2),
  1819. 0.048360918656699191, 12)
  1820. class TestBessel(object):
  1821. def test_itj0y0(self):
  1822. it0 = array(special.itj0y0(.2))
  1823. assert_array_almost_equal(it0,array([0.19933433254006822, -0.34570883800412566]),8)
  1824. def test_it2j0y0(self):
  1825. it2 = array(special.it2j0y0(.2))
  1826. assert_array_almost_equal(it2,array([0.0049937546274601858, -0.43423067011231614]),8)
  1827. def test_negv_iv(self):
  1828. assert_equal(special.iv(3,2), special.iv(-3,2))
  1829. def test_j0(self):
  1830. oz = special.j0(.1)
  1831. ozr = special.jn(0,.1)
  1832. assert_almost_equal(oz,ozr,8)
  1833. def test_j1(self):
  1834. o1 = special.j1(.1)
  1835. o1r = special.jn(1,.1)
  1836. assert_almost_equal(o1,o1r,8)
  1837. def test_jn(self):
  1838. jnnr = special.jn(1,.2)
  1839. assert_almost_equal(jnnr,0.099500832639235995,8)
  1840. def test_negv_jv(self):
  1841. assert_almost_equal(special.jv(-3,2), -special.jv(3,2), 14)
  1842. def test_jv(self):
  1843. values = [[0, 0.1, 0.99750156206604002],
  1844. [2./3, 1e-8, 0.3239028506761532e-5],
  1845. [2./3, 1e-10, 0.1503423854873779e-6],
  1846. [3.1, 1e-10, 0.1711956265409013e-32],
  1847. [2./3, 4.0, -0.2325440850267039],
  1848. ]
  1849. for i, (v, x, y) in enumerate(values):
  1850. yc = special.jv(v, x)
  1851. assert_almost_equal(yc, y, 8, err_msg='test #%d' % i)
  1852. def test_negv_jve(self):
  1853. assert_almost_equal(special.jve(-3,2), -special.jve(3,2), 14)
  1854. def test_jve(self):
  1855. jvexp = special.jve(1,.2)
  1856. assert_almost_equal(jvexp,0.099500832639235995,8)
  1857. jvexp1 = special.jve(1,.2+1j)
  1858. z = .2+1j
  1859. jvexpr = special.jv(1,z)*exp(-abs(z.imag))
  1860. assert_almost_equal(jvexp1,jvexpr,8)
  1861. def test_jn_zeros(self):
  1862. jn0 = special.jn_zeros(0,5)
  1863. jn1 = special.jn_zeros(1,5)
  1864. assert_array_almost_equal(jn0,array([2.4048255577,
  1865. 5.5200781103,
  1866. 8.6537279129,
  1867. 11.7915344391,
  1868. 14.9309177086]),4)
  1869. assert_array_almost_equal(jn1,array([3.83171,
  1870. 7.01559,
  1871. 10.17347,
  1872. 13.32369,
  1873. 16.47063]),4)
  1874. jn102 = special.jn_zeros(102,5)
  1875. assert_allclose(jn102, array([110.89174935992040343,
  1876. 117.83464175788308398,
  1877. 123.70194191713507279,
  1878. 129.02417238949092824,
  1879. 134.00114761868422559]), rtol=1e-13)
  1880. jn301 = special.jn_zeros(301,5)
  1881. assert_allclose(jn301, array([313.59097866698830153,
  1882. 323.21549776096288280,
  1883. 331.22338738656748796,
  1884. 338.39676338872084500,
  1885. 345.03284233056064157]), rtol=1e-13)
  1886. def test_jn_zeros_slow(self):
  1887. jn0 = special.jn_zeros(0, 300)
  1888. assert_allclose(jn0[260-1], 816.02884495068867280, rtol=1e-13)
  1889. assert_allclose(jn0[280-1], 878.86068707124422606, rtol=1e-13)
  1890. assert_allclose(jn0[300-1], 941.69253065317954064, rtol=1e-13)
  1891. jn10 = special.jn_zeros(10, 300)
  1892. assert_allclose(jn10[260-1], 831.67668514305631151, rtol=1e-13)
  1893. assert_allclose(jn10[280-1], 894.51275095371316931, rtol=1e-13)
  1894. assert_allclose(jn10[300-1], 957.34826370866539775, rtol=1e-13)
  1895. jn3010 = special.jn_zeros(3010,5)
  1896. assert_allclose(jn3010, array([3036.86590780927,
  1897. 3057.06598526482,
  1898. 3073.66360690272,
  1899. 3088.37736494778,
  1900. 3101.86438139042]), rtol=1e-8)
  1901. def test_jnjnp_zeros(self):
  1902. jn = special.jn
  1903. def jnp(n, x):
  1904. return (jn(n-1,x) - jn(n+1,x))/2
  1905. for nt in range(1, 30):
  1906. z, n, m, t = special.jnjnp_zeros(nt)
  1907. for zz, nn, tt in zip(z, n, t):
  1908. if tt == 0:
  1909. assert_allclose(jn(nn, zz), 0, atol=1e-6)
  1910. elif tt == 1:
  1911. assert_allclose(jnp(nn, zz), 0, atol=1e-6)
  1912. else:
  1913. raise AssertionError("Invalid t return for nt=%d" % nt)
  1914. def test_jnp_zeros(self):
  1915. jnp = special.jnp_zeros(1,5)
  1916. assert_array_almost_equal(jnp, array([1.84118,
  1917. 5.33144,
  1918. 8.53632,
  1919. 11.70600,
  1920. 14.86359]),4)
  1921. jnp = special.jnp_zeros(443,5)
  1922. assert_allclose(special.jvp(443, jnp), 0, atol=1e-15)
  1923. def test_jnyn_zeros(self):
  1924. jnz = special.jnyn_zeros(1,5)
  1925. assert_array_almost_equal(jnz,(array([3.83171,
  1926. 7.01559,
  1927. 10.17347,
  1928. 13.32369,
  1929. 16.47063]),
  1930. array([1.84118,
  1931. 5.33144,
  1932. 8.53632,
  1933. 11.70600,
  1934. 14.86359]),
  1935. array([2.19714,
  1936. 5.42968,
  1937. 8.59601,
  1938. 11.74915,
  1939. 14.89744]),
  1940. array([3.68302,
  1941. 6.94150,
  1942. 10.12340,
  1943. 13.28576,
  1944. 16.44006])),5)
  1945. def test_jvp(self):
  1946. jvprim = special.jvp(2,2)
  1947. jv0 = (special.jv(1,2)-special.jv(3,2))/2
  1948. assert_almost_equal(jvprim,jv0,10)
  1949. def test_k0(self):
  1950. ozk = special.k0(.1)
  1951. ozkr = special.kv(0,.1)
  1952. assert_almost_equal(ozk,ozkr,8)
  1953. def test_k0e(self):
  1954. ozke = special.k0e(.1)
  1955. ozker = special.kve(0,.1)
  1956. assert_almost_equal(ozke,ozker,8)
  1957. def test_k1(self):
  1958. o1k = special.k1(.1)
  1959. o1kr = special.kv(1,.1)
  1960. assert_almost_equal(o1k,o1kr,8)
  1961. def test_k1e(self):
  1962. o1ke = special.k1e(.1)
  1963. o1ker = special.kve(1,.1)
  1964. assert_almost_equal(o1ke,o1ker,8)
  1965. def test_jacobi(self):
  1966. a = 5*np.random.random() - 1
  1967. b = 5*np.random.random() - 1
  1968. P0 = special.jacobi(0,a,b)
  1969. P1 = special.jacobi(1,a,b)
  1970. P2 = special.jacobi(2,a,b)
  1971. P3 = special.jacobi(3,a,b)
  1972. assert_array_almost_equal(P0.c,[1],13)
  1973. assert_array_almost_equal(P1.c,array([a+b+2,a-b])/2.0,13)
  1974. cp = [(a+b+3)*(a+b+4), 4*(a+b+3)*(a+2), 4*(a+1)*(a+2)]
  1975. p2c = [cp[0],cp[1]-2*cp[0],cp[2]-cp[1]+cp[0]]
  1976. assert_array_almost_equal(P2.c,array(p2c)/8.0,13)
  1977. cp = [(a+b+4)*(a+b+5)*(a+b+6),6*(a+b+4)*(a+b+5)*(a+3),
  1978. 12*(a+b+4)*(a+2)*(a+3),8*(a+1)*(a+2)*(a+3)]
  1979. p3c = [cp[0],cp[1]-3*cp[0],cp[2]-2*cp[1]+3*cp[0],cp[3]-cp[2]+cp[1]-cp[0]]
  1980. assert_array_almost_equal(P3.c,array(p3c)/48.0,13)
  1981. def test_kn(self):
  1982. kn1 = special.kn(0,.2)
  1983. assert_almost_equal(kn1,1.7527038555281462,8)
  1984. def test_negv_kv(self):
  1985. assert_equal(special.kv(3.0, 2.2), special.kv(-3.0, 2.2))
  1986. def test_kv0(self):
  1987. kv0 = special.kv(0,.2)
  1988. assert_almost_equal(kv0, 1.7527038555281462, 10)
  1989. def test_kv1(self):
  1990. kv1 = special.kv(1,0.2)
  1991. assert_almost_equal(kv1, 4.775972543220472, 10)
  1992. def test_kv2(self):
  1993. kv2 = special.kv(2,0.2)
  1994. assert_almost_equal(kv2, 49.51242928773287, 10)
  1995. def test_kn_largeorder(self):
  1996. assert_allclose(special.kn(32, 1), 1.7516596664574289e+43)
  1997. def test_kv_largearg(self):
  1998. assert_equal(special.kv(0, 1e19), 0)
  1999. def test_negv_kve(self):
  2000. assert_equal(special.kve(3.0, 2.2), special.kve(-3.0, 2.2))
  2001. def test_kve(self):
  2002. kve1 = special.kve(0,.2)
  2003. kv1 = special.kv(0,.2)*exp(.2)
  2004. assert_almost_equal(kve1,kv1,8)
  2005. z = .2+1j
  2006. kve2 = special.kve(0,z)
  2007. kv2 = special.kv(0,z)*exp(z)
  2008. assert_almost_equal(kve2,kv2,8)
  2009. def test_kvp_v0n1(self):
  2010. z = 2.2
  2011. assert_almost_equal(-special.kv(1,z), special.kvp(0,z, n=1), 10)
  2012. def test_kvp_n1(self):
  2013. v = 3.
  2014. z = 2.2
  2015. xc = -special.kv(v+1,z) + v/z*special.kv(v,z)
  2016. x = special.kvp(v,z, n=1)
  2017. assert_almost_equal(xc, x, 10) # this function (kvp) is broken
  2018. def test_kvp_n2(self):
  2019. v = 3.
  2020. z = 2.2
  2021. xc = (z**2+v**2-v)/z**2 * special.kv(v,z) + special.kv(v+1,z)/z
  2022. x = special.kvp(v, z, n=2)
  2023. assert_almost_equal(xc, x, 10)
  2024. def test_y0(self):
  2025. oz = special.y0(.1)
  2026. ozr = special.yn(0,.1)
  2027. assert_almost_equal(oz,ozr,8)
  2028. def test_y1(self):
  2029. o1 = special.y1(.1)
  2030. o1r = special.yn(1,.1)
  2031. assert_almost_equal(o1,o1r,8)
  2032. def test_y0_zeros(self):
  2033. yo,ypo = special.y0_zeros(2)
  2034. zo,zpo = special.y0_zeros(2,complex=1)
  2035. all = r_[yo,zo]
  2036. allval = r_[ypo,zpo]
  2037. assert_array_almost_equal(abs(special.yv(0.0,all)),0.0,11)
  2038. assert_array_almost_equal(abs(special.yv(1,all)-allval),0.0,11)
  2039. def test_y1_zeros(self):
  2040. y1 = special.y1_zeros(1)
  2041. assert_array_almost_equal(y1,(array([2.19714]),array([0.52079])),5)
  2042. def test_y1p_zeros(self):
  2043. y1p = special.y1p_zeros(1,complex=1)
  2044. assert_array_almost_equal(y1p,(array([0.5768+0.904j]), array([-0.7635+0.5892j])),3)
  2045. def test_yn_zeros(self):
  2046. an = special.yn_zeros(4,2)
  2047. assert_array_almost_equal(an,array([5.64515, 9.36162]),5)
  2048. an = special.yn_zeros(443,5)
  2049. assert_allclose(an, [450.13573091578090314, 463.05692376675001542,
  2050. 472.80651546418663566, 481.27353184725625838,
  2051. 488.98055964441374646], rtol=1e-15)
  2052. def test_ynp_zeros(self):
  2053. ao = special.ynp_zeros(0,2)
  2054. assert_array_almost_equal(ao,array([2.19714133, 5.42968104]),6)
  2055. ao = special.ynp_zeros(43,5)
  2056. assert_allclose(special.yvp(43, ao), 0, atol=1e-15)
  2057. ao = special.ynp_zeros(443,5)
  2058. assert_allclose(special.yvp(443, ao), 0, atol=1e-9)
  2059. def test_ynp_zeros_large_order(self):
  2060. ao = special.ynp_zeros(443,5)
  2061. assert_allclose(special.yvp(443, ao), 0, atol=1e-14)
  2062. def test_yn(self):
  2063. yn2n = special.yn(1,.2)
  2064. assert_almost_equal(yn2n,-3.3238249881118471,8)
  2065. def test_negv_yv(self):
  2066. assert_almost_equal(special.yv(-3,2), -special.yv(3,2), 14)
  2067. def test_yv(self):
  2068. yv2 = special.yv(1,.2)
  2069. assert_almost_equal(yv2,-3.3238249881118471,8)
  2070. def test_negv_yve(self):
  2071. assert_almost_equal(special.yve(-3,2), -special.yve(3,2), 14)
  2072. def test_yve(self):
  2073. yve2 = special.yve(1,.2)
  2074. assert_almost_equal(yve2,-3.3238249881118471,8)
  2075. yve2r = special.yv(1,.2+1j)*exp(-1)
  2076. yve22 = special.yve(1,.2+1j)
  2077. assert_almost_equal(yve22,yve2r,8)
  2078. def test_yvp(self):
  2079. yvpr = (special.yv(1,.2) - special.yv(3,.2))/2.0
  2080. yvp1 = special.yvp(2,.2)
  2081. assert_array_almost_equal(yvp1,yvpr,10)
  2082. def _cephes_vs_amos_points(self):
  2083. """Yield points at which to compare Cephes implementation to AMOS"""
  2084. # check several points, including large-amplitude ones
  2085. for v in [-120, -100.3, -20., -10., -1., -.5,
  2086. 0., 1., 12.49, 120., 301]:
  2087. for z in [-1300, -11, -10, -1, 1., 10., 200.5, 401., 600.5,
  2088. 700.6, 1300, 10003]:
  2089. yield v, z
  2090. # check half-integers; these are problematic points at least
  2091. # for cephes/iv
  2092. for v in 0.5 + arange(-60, 60):
  2093. yield v, 3.5
  2094. def check_cephes_vs_amos(self, f1, f2, rtol=1e-11, atol=0, skip=None):
  2095. for v, z in self._cephes_vs_amos_points():
  2096. if skip is not None and skip(v, z):
  2097. continue
  2098. c1, c2, c3 = f1(v, z), f1(v,z+0j), f2(int(v), z)
  2099. if np.isinf(c1):
  2100. assert_(np.abs(c2) >= 1e300, (v, z))
  2101. elif np.isnan(c1):
  2102. assert_(c2.imag != 0, (v, z))
  2103. else:
  2104. assert_allclose(c1, c2, err_msg=(v, z), rtol=rtol, atol=atol)
  2105. if v == int(v):
  2106. assert_allclose(c3, c2, err_msg=(v, z),
  2107. rtol=rtol, atol=atol)
  2108. def test_jv_cephes_vs_amos(self):
  2109. self.check_cephes_vs_amos(special.jv, special.jn, rtol=1e-10, atol=1e-305)
  2110. def test_yv_cephes_vs_amos(self):
  2111. self.check_cephes_vs_amos(special.yv, special.yn, rtol=1e-11, atol=1e-305)
  2112. def test_yv_cephes_vs_amos_only_small_orders(self):
  2113. skipper = lambda v, z: (abs(v) > 50)
  2114. self.check_cephes_vs_amos(special.yv, special.yn, rtol=1e-11, atol=1e-305, skip=skipper)
  2115. def test_iv_cephes_vs_amos(self):
  2116. olderr = np.seterr(all='ignore')
  2117. try:
  2118. self.check_cephes_vs_amos(special.iv, special.iv, rtol=5e-9, atol=1e-305)
  2119. finally:
  2120. np.seterr(**olderr)
  2121. @pytest.mark.slow
  2122. def test_iv_cephes_vs_amos_mass_test(self):
  2123. N = 1000000
  2124. np.random.seed(1)
  2125. v = np.random.pareto(0.5, N) * (-1)**np.random.randint(2, size=N)
  2126. x = np.random.pareto(0.2, N) * (-1)**np.random.randint(2, size=N)
  2127. imsk = (np.random.randint(8, size=N) == 0)
  2128. v[imsk] = v[imsk].astype(int)
  2129. old_err = np.seterr(all='ignore')
  2130. try:
  2131. c1 = special.iv(v, x)
  2132. c2 = special.iv(v, x+0j)
  2133. # deal with differences in the inf and zero cutoffs
  2134. c1[abs(c1) > 1e300] = np.inf
  2135. c2[abs(c2) > 1e300] = np.inf
  2136. c1[abs(c1) < 1e-300] = 0
  2137. c2[abs(c2) < 1e-300] = 0
  2138. dc = abs(c1/c2 - 1)
  2139. dc[np.isnan(dc)] = 0
  2140. finally:
  2141. np.seterr(**old_err)
  2142. k = np.argmax(dc)
  2143. # Most error apparently comes from AMOS and not our implementation;
  2144. # there are some problems near integer orders there
  2145. assert_(dc[k] < 2e-7, (v[k], x[k], special.iv(v[k], x[k]), special.iv(v[k], x[k]+0j)))
  2146. def test_kv_cephes_vs_amos(self):
  2147. self.check_cephes_vs_amos(special.kv, special.kn, rtol=1e-9, atol=1e-305)
  2148. self.check_cephes_vs_amos(special.kv, special.kv, rtol=1e-9, atol=1e-305)
  2149. def test_ticket_623(self):
  2150. assert_allclose(special.jv(3, 4), 0.43017147387562193)
  2151. assert_allclose(special.jv(301, 1300), 0.0183487151115275)
  2152. assert_allclose(special.jv(301, 1296.0682), -0.0224174325312048)
  2153. def test_ticket_853(self):
  2154. """Negative-order Bessels"""
  2155. # cephes
  2156. assert_allclose(special.jv(-1, 1), -0.4400505857449335)
  2157. assert_allclose(special.jv(-2, 1), 0.1149034849319005)
  2158. assert_allclose(special.yv(-1, 1), 0.7812128213002887)
  2159. assert_allclose(special.yv(-2, 1), -1.650682606816255)
  2160. assert_allclose(special.iv(-1, 1), 0.5651591039924851)
  2161. assert_allclose(special.iv(-2, 1), 0.1357476697670383)
  2162. assert_allclose(special.kv(-1, 1), 0.6019072301972347)
  2163. assert_allclose(special.kv(-2, 1), 1.624838898635178)
  2164. assert_allclose(special.jv(-0.5, 1), 0.43109886801837607952)
  2165. assert_allclose(special.yv(-0.5, 1), 0.6713967071418031)
  2166. assert_allclose(special.iv(-0.5, 1), 1.231200214592967)
  2167. assert_allclose(special.kv(-0.5, 1), 0.4610685044478945)
  2168. # amos
  2169. assert_allclose(special.jv(-1, 1+0j), -0.4400505857449335)
  2170. assert_allclose(special.jv(-2, 1+0j), 0.1149034849319005)
  2171. assert_allclose(special.yv(-1, 1+0j), 0.7812128213002887)
  2172. assert_allclose(special.yv(-2, 1+0j), -1.650682606816255)
  2173. assert_allclose(special.iv(-1, 1+0j), 0.5651591039924851)
  2174. assert_allclose(special.iv(-2, 1+0j), 0.1357476697670383)
  2175. assert_allclose(special.kv(-1, 1+0j), 0.6019072301972347)
  2176. assert_allclose(special.kv(-2, 1+0j), 1.624838898635178)
  2177. assert_allclose(special.jv(-0.5, 1+0j), 0.43109886801837607952)
  2178. assert_allclose(special.jv(-0.5, 1+1j), 0.2628946385649065-0.827050182040562j)
  2179. assert_allclose(special.yv(-0.5, 1+0j), 0.6713967071418031)
  2180. assert_allclose(special.yv(-0.5, 1+1j), 0.967901282890131+0.0602046062142816j)
  2181. assert_allclose(special.iv(-0.5, 1+0j), 1.231200214592967)
  2182. assert_allclose(special.iv(-0.5, 1+1j), 0.77070737376928+0.39891821043561j)
  2183. assert_allclose(special.kv(-0.5, 1+0j), 0.4610685044478945)
  2184. assert_allclose(special.kv(-0.5, 1+1j), 0.06868578341999-0.38157825981268j)
  2185. assert_allclose(special.jve(-0.5,1+0.3j), special.jv(-0.5, 1+0.3j)*exp(-0.3))
  2186. assert_allclose(special.yve(-0.5,1+0.3j), special.yv(-0.5, 1+0.3j)*exp(-0.3))
  2187. assert_allclose(special.ive(-0.5,0.3+1j), special.iv(-0.5, 0.3+1j)*exp(-0.3))
  2188. assert_allclose(special.kve(-0.5,0.3+1j), special.kv(-0.5, 0.3+1j)*exp(0.3+1j))
  2189. assert_allclose(special.hankel1(-0.5, 1+1j), special.jv(-0.5, 1+1j) + 1j*special.yv(-0.5,1+1j))
  2190. assert_allclose(special.hankel2(-0.5, 1+1j), special.jv(-0.5, 1+1j) - 1j*special.yv(-0.5,1+1j))
  2191. def test_ticket_854(self):
  2192. """Real-valued Bessel domains"""
  2193. assert_(isnan(special.jv(0.5, -1)))
  2194. assert_(isnan(special.iv(0.5, -1)))
  2195. assert_(isnan(special.yv(0.5, -1)))
  2196. assert_(isnan(special.yv(1, -1)))
  2197. assert_(isnan(special.kv(0.5, -1)))
  2198. assert_(isnan(special.kv(1, -1)))
  2199. assert_(isnan(special.jve(0.5, -1)))
  2200. assert_(isnan(special.ive(0.5, -1)))
  2201. assert_(isnan(special.yve(0.5, -1)))
  2202. assert_(isnan(special.yve(1, -1)))
  2203. assert_(isnan(special.kve(0.5, -1)))
  2204. assert_(isnan(special.kve(1, -1)))
  2205. assert_(isnan(special.airye(-1)[0:2]).all(), special.airye(-1))
  2206. assert_(not isnan(special.airye(-1)[2:4]).any(), special.airye(-1))
  2207. def test_gh_7909(self):
  2208. assert_(special.kv(1.5, 0) == np.inf)
  2209. assert_(special.kve(1.5, 0) == np.inf)
  2210. def test_ticket_503(self):
  2211. """Real-valued Bessel I overflow"""
  2212. assert_allclose(special.iv(1, 700), 1.528500390233901e302)
  2213. assert_allclose(special.iv(1000, 1120), 1.301564549405821e301)
  2214. def test_iv_hyperg_poles(self):
  2215. assert_allclose(special.iv(-0.5, 1), 1.231200214592967)
  2216. def iv_series(self, v, z, n=200):
  2217. k = arange(0, n).astype(float_)
  2218. r = (v+2*k)*log(.5*z) - special.gammaln(k+1) - special.gammaln(v+k+1)
  2219. r[isnan(r)] = inf
  2220. r = exp(r)
  2221. err = abs(r).max() * finfo(float_).eps * n + abs(r[-1])*10
  2222. return r.sum(), err
  2223. def test_i0_series(self):
  2224. for z in [1., 10., 200.5]:
  2225. value, err = self.iv_series(0, z)
  2226. assert_allclose(special.i0(z), value, atol=err, err_msg=z)
  2227. def test_i1_series(self):
  2228. for z in [1., 10., 200.5]:
  2229. value, err = self.iv_series(1, z)
  2230. assert_allclose(special.i1(z), value, atol=err, err_msg=z)
  2231. def test_iv_series(self):
  2232. for v in [-20., -10., -1., 0., 1., 12.49, 120.]:
  2233. for z in [1., 10., 200.5, -1+2j]:
  2234. value, err = self.iv_series(v, z)
  2235. assert_allclose(special.iv(v, z), value, atol=err, err_msg=(v, z))
  2236. def test_i0(self):
  2237. values = [[0.0, 1.0],
  2238. [1e-10, 1.0],
  2239. [0.1, 0.9071009258],
  2240. [0.5, 0.6450352706],
  2241. [1.0, 0.4657596077],
  2242. [2.5, 0.2700464416],
  2243. [5.0, 0.1835408126],
  2244. [20.0, 0.0897803119],
  2245. ]
  2246. for i, (x, v) in enumerate(values):
  2247. cv = special.i0(x) * exp(-x)
  2248. assert_almost_equal(cv, v, 8, err_msg='test #%d' % i)
  2249. def test_i0e(self):
  2250. oize = special.i0e(.1)
  2251. oizer = special.ive(0,.1)
  2252. assert_almost_equal(oize,oizer,8)
  2253. def test_i1(self):
  2254. values = [[0.0, 0.0],
  2255. [1e-10, 0.4999999999500000e-10],
  2256. [0.1, 0.0452984468],
  2257. [0.5, 0.1564208032],
  2258. [1.0, 0.2079104154],
  2259. [5.0, 0.1639722669],
  2260. [20.0, 0.0875062222],
  2261. ]
  2262. for i, (x, v) in enumerate(values):
  2263. cv = special.i1(x) * exp(-x)
  2264. assert_almost_equal(cv, v, 8, err_msg='test #%d' % i)
  2265. def test_i1e(self):
  2266. oi1e = special.i1e(.1)
  2267. oi1er = special.ive(1,.1)
  2268. assert_almost_equal(oi1e,oi1er,8)
  2269. def test_iti0k0(self):
  2270. iti0 = array(special.iti0k0(5))
  2271. assert_array_almost_equal(iti0,array([31.848667776169801, 1.5673873907283657]),5)
  2272. def test_it2i0k0(self):
  2273. it2k = special.it2i0k0(.1)
  2274. assert_array_almost_equal(it2k,array([0.0012503906973464409, 3.3309450354686687]),6)
  2275. def test_iv(self):
  2276. iv1 = special.iv(0,.1)*exp(-.1)
  2277. assert_almost_equal(iv1,0.90710092578230106,10)
  2278. def test_negv_ive(self):
  2279. assert_equal(special.ive(3,2), special.ive(-3,2))
  2280. def test_ive(self):
  2281. ive1 = special.ive(0,.1)
  2282. iv1 = special.iv(0,.1)*exp(-.1)
  2283. assert_almost_equal(ive1,iv1,10)
  2284. def test_ivp0(self):
  2285. assert_almost_equal(special.iv(1,2), special.ivp(0,2), 10)
  2286. def test_ivp(self):
  2287. y = (special.iv(0,2) + special.iv(2,2))/2
  2288. x = special.ivp(1,2)
  2289. assert_almost_equal(x,y,10)
  2290. class TestLaguerre(object):
  2291. def test_laguerre(self):
  2292. lag0 = special.laguerre(0)
  2293. lag1 = special.laguerre(1)
  2294. lag2 = special.laguerre(2)
  2295. lag3 = special.laguerre(3)
  2296. lag4 = special.laguerre(4)
  2297. lag5 = special.laguerre(5)
  2298. assert_array_almost_equal(lag0.c,[1],13)
  2299. assert_array_almost_equal(lag1.c,[-1,1],13)
  2300. assert_array_almost_equal(lag2.c,array([1,-4,2])/2.0,13)
  2301. assert_array_almost_equal(lag3.c,array([-1,9,-18,6])/6.0,13)
  2302. assert_array_almost_equal(lag4.c,array([1,-16,72,-96,24])/24.0,13)
  2303. assert_array_almost_equal(lag5.c,array([-1,25,-200,600,-600,120])/120.0,13)
  2304. def test_genlaguerre(self):
  2305. k = 5*np.random.random() - 0.9
  2306. lag0 = special.genlaguerre(0,k)
  2307. lag1 = special.genlaguerre(1,k)
  2308. lag2 = special.genlaguerre(2,k)
  2309. lag3 = special.genlaguerre(3,k)
  2310. assert_equal(lag0.c,[1])
  2311. assert_equal(lag1.c,[-1,k+1])
  2312. assert_almost_equal(lag2.c,array([1,-2*(k+2),(k+1.)*(k+2.)])/2.0)
  2313. assert_almost_equal(lag3.c,array([-1,3*(k+3),-3*(k+2)*(k+3),(k+1)*(k+2)*(k+3)])/6.0)
  2314. # Base polynomials come from Abrahmowitz and Stegan
  2315. class TestLegendre(object):
  2316. def test_legendre(self):
  2317. leg0 = special.legendre(0)
  2318. leg1 = special.legendre(1)
  2319. leg2 = special.legendre(2)
  2320. leg3 = special.legendre(3)
  2321. leg4 = special.legendre(4)
  2322. leg5 = special.legendre(5)
  2323. assert_equal(leg0.c, [1])
  2324. assert_equal(leg1.c, [1,0])
  2325. assert_almost_equal(leg2.c, array([3,0,-1])/2.0, decimal=13)
  2326. assert_almost_equal(leg3.c, array([5,0,-3,0])/2.0)
  2327. assert_almost_equal(leg4.c, array([35,0,-30,0,3])/8.0)
  2328. assert_almost_equal(leg5.c, array([63,0,-70,0,15,0])/8.0)
  2329. class TestLambda(object):
  2330. def test_lmbda(self):
  2331. lam = special.lmbda(1,.1)
  2332. lamr = (array([special.jn(0,.1), 2*special.jn(1,.1)/.1]),
  2333. array([special.jvp(0,.1), -2*special.jv(1,.1)/.01 + 2*special.jvp(1,.1)/.1]))
  2334. assert_array_almost_equal(lam,lamr,8)
  2335. class TestLog1p(object):
  2336. def test_log1p(self):
  2337. l1p = (special.log1p(10), special.log1p(11), special.log1p(12))
  2338. l1prl = (log(11), log(12), log(13))
  2339. assert_array_almost_equal(l1p,l1prl,8)
  2340. def test_log1pmore(self):
  2341. l1pm = (special.log1p(1), special.log1p(1.1), special.log1p(1.2))
  2342. l1pmrl = (log(2),log(2.1),log(2.2))
  2343. assert_array_almost_equal(l1pm,l1pmrl,8)
  2344. class TestLegendreFunctions(object):
  2345. def test_clpmn(self):
  2346. z = 0.5+0.3j
  2347. clp = special.clpmn(2, 2, z, 3)
  2348. assert_array_almost_equal(clp,
  2349. (array([[1.0000, z, 0.5*(3*z*z-1)],
  2350. [0.0000, sqrt(z*z-1), 3*z*sqrt(z*z-1)],
  2351. [0.0000, 0.0000, 3*(z*z-1)]]),
  2352. array([[0.0000, 1.0000, 3*z],
  2353. [0.0000, z/sqrt(z*z-1), 3*(2*z*z-1)/sqrt(z*z-1)],
  2354. [0.0000, 0.0000, 6*z]])),
  2355. 7)
  2356. def test_clpmn_close_to_real_2(self):
  2357. eps = 1e-10
  2358. m = 1
  2359. n = 3
  2360. x = 0.5
  2361. clp_plus = special.clpmn(m, n, x+1j*eps, 2)[0][m, n]
  2362. clp_minus = special.clpmn(m, n, x-1j*eps, 2)[0][m, n]
  2363. assert_array_almost_equal(array([clp_plus, clp_minus]),
  2364. array([special.lpmv(m, n, x),
  2365. special.lpmv(m, n, x)]),
  2366. 7)
  2367. def test_clpmn_close_to_real_3(self):
  2368. eps = 1e-10
  2369. m = 1
  2370. n = 3
  2371. x = 0.5
  2372. clp_plus = special.clpmn(m, n, x+1j*eps, 3)[0][m, n]
  2373. clp_minus = special.clpmn(m, n, x-1j*eps, 3)[0][m, n]
  2374. assert_array_almost_equal(array([clp_plus, clp_minus]),
  2375. array([special.lpmv(m, n, x)*np.exp(-0.5j*m*np.pi),
  2376. special.lpmv(m, n, x)*np.exp(0.5j*m*np.pi)]),
  2377. 7)
  2378. def test_clpmn_across_unit_circle(self):
  2379. eps = 1e-7
  2380. m = 1
  2381. n = 1
  2382. x = 1j
  2383. for type in [2, 3]:
  2384. assert_almost_equal(special.clpmn(m, n, x+1j*eps, type)[0][m, n],
  2385. special.clpmn(m, n, x-1j*eps, type)[0][m, n], 6)
  2386. def test_inf(self):
  2387. for z in (1, -1):
  2388. for n in range(4):
  2389. for m in range(1, n):
  2390. lp = special.clpmn(m, n, z)
  2391. assert_(np.isinf(lp[1][1,1:]).all())
  2392. lp = special.lpmn(m, n, z)
  2393. assert_(np.isinf(lp[1][1,1:]).all())
  2394. def test_deriv_clpmn(self):
  2395. # data inside and outside of the unit circle
  2396. zvals = [0.5+0.5j, -0.5+0.5j, -0.5-0.5j, 0.5-0.5j,
  2397. 1+1j, -1+1j, -1-1j, 1-1j]
  2398. m = 2
  2399. n = 3
  2400. for type in [2, 3]:
  2401. for z in zvals:
  2402. for h in [1e-3, 1e-3j]:
  2403. approx_derivative = (special.clpmn(m, n, z+0.5*h, type)[0]
  2404. - special.clpmn(m, n, z-0.5*h, type)[0])/h
  2405. assert_allclose(special.clpmn(m, n, z, type)[1],
  2406. approx_derivative,
  2407. rtol=1e-4)
  2408. def test_lpmn(self):
  2409. lp = special.lpmn(0,2,.5)
  2410. assert_array_almost_equal(lp,(array([[1.00000,
  2411. 0.50000,
  2412. -0.12500]]),
  2413. array([[0.00000,
  2414. 1.00000,
  2415. 1.50000]])),4)
  2416. def test_lpn(self):
  2417. lpnf = special.lpn(2,.5)
  2418. assert_array_almost_equal(lpnf,(array([1.00000,
  2419. 0.50000,
  2420. -0.12500]),
  2421. array([0.00000,
  2422. 1.00000,
  2423. 1.50000])),4)
  2424. def test_lpmv(self):
  2425. lp = special.lpmv(0,2,.5)
  2426. assert_almost_equal(lp,-0.125,7)
  2427. lp = special.lpmv(0,40,.001)
  2428. assert_almost_equal(lp,0.1252678976534484,7)
  2429. # XXX: this is outside the domain of the current implementation,
  2430. # so ensure it returns a NaN rather than a wrong answer.
  2431. olderr = np.seterr(all='ignore')
  2432. try:
  2433. lp = special.lpmv(-1,-1,.001)
  2434. finally:
  2435. np.seterr(**olderr)
  2436. assert_(lp != 0 or np.isnan(lp))
  2437. def test_lqmn(self):
  2438. lqmnf = special.lqmn(0,2,.5)
  2439. lqf = special.lqn(2,.5)
  2440. assert_array_almost_equal(lqmnf[0][0],lqf[0],4)
  2441. assert_array_almost_equal(lqmnf[1][0],lqf[1],4)
  2442. def test_lqmn_gt1(self):
  2443. """algorithm for real arguments changes at 1.0001
  2444. test against analytical result for m=2, n=1
  2445. """
  2446. x0 = 1.0001
  2447. delta = 0.00002
  2448. for x in (x0-delta, x0+delta):
  2449. lq = special.lqmn(2, 1, x)[0][-1, -1]
  2450. expected = 2/(x*x-1)
  2451. assert_almost_equal(lq, expected)
  2452. def test_lqmn_shape(self):
  2453. a, b = special.lqmn(4, 4, 1.1)
  2454. assert_equal(a.shape, (5, 5))
  2455. assert_equal(b.shape, (5, 5))
  2456. a, b = special.lqmn(4, 0, 1.1)
  2457. assert_equal(a.shape, (5, 1))
  2458. assert_equal(b.shape, (5, 1))
  2459. def test_lqn(self):
  2460. lqf = special.lqn(2,.5)
  2461. assert_array_almost_equal(lqf,(array([0.5493, -0.7253, -0.8187]),
  2462. array([1.3333, 1.216, -0.8427])),4)
  2463. class TestMathieu(object):
  2464. def test_mathieu_a(self):
  2465. pass
  2466. def test_mathieu_even_coef(self):
  2467. mc = special.mathieu_even_coef(2,5)
  2468. # Q not defined broken and cannot figure out proper reporting order
  2469. def test_mathieu_odd_coef(self):
  2470. # same problem as above
  2471. pass
  2472. class TestFresnelIntegral(object):
  2473. def test_modfresnelp(self):
  2474. pass
  2475. def test_modfresnelm(self):
  2476. pass
  2477. class TestOblCvSeq(object):
  2478. def test_obl_cv_seq(self):
  2479. obl = special.obl_cv_seq(0,3,1)
  2480. assert_array_almost_equal(obl,array([-0.348602,
  2481. 1.393206,
  2482. 5.486800,
  2483. 11.492120]),5)
  2484. class TestParabolicCylinder(object):
  2485. def test_pbdn_seq(self):
  2486. pb = special.pbdn_seq(1,.1)
  2487. assert_array_almost_equal(pb,(array([0.9975,
  2488. 0.0998]),
  2489. array([-0.0499,
  2490. 0.9925])),4)
  2491. def test_pbdv(self):
  2492. pbv = special.pbdv(1,.2)
  2493. derrl = 1/2*(.2)*special.pbdv(1,.2)[0] - special.pbdv(0,.2)[0]
  2494. def test_pbdv_seq(self):
  2495. pbn = special.pbdn_seq(1,.1)
  2496. pbv = special.pbdv_seq(1,.1)
  2497. assert_array_almost_equal(pbv,(real(pbn[0]),real(pbn[1])),4)
  2498. def test_pbdv_points(self):
  2499. # simple case
  2500. eta = np.linspace(-10, 10, 5)
  2501. z = 2**(eta/2)*np.sqrt(np.pi)/special.gamma(.5-.5*eta)
  2502. assert_allclose(special.pbdv(eta, 0.)[0], z, rtol=1e-14, atol=1e-14)
  2503. # some points
  2504. assert_allclose(special.pbdv(10.34, 20.44)[0], 1.3731383034455e-32, rtol=1e-12)
  2505. assert_allclose(special.pbdv(-9.53, 3.44)[0], 3.166735001119246e-8, rtol=1e-12)
  2506. def test_pbdv_gradient(self):
  2507. x = np.linspace(-4, 4, 8)[:,None]
  2508. eta = np.linspace(-10, 10, 5)[None,:]
  2509. p = special.pbdv(eta, x)
  2510. eps = 1e-7 + 1e-7*abs(x)
  2511. dp = (special.pbdv(eta, x + eps)[0] - special.pbdv(eta, x - eps)[0]) / eps / 2.
  2512. assert_allclose(p[1], dp, rtol=1e-6, atol=1e-6)
  2513. def test_pbvv_gradient(self):
  2514. x = np.linspace(-4, 4, 8)[:,None]
  2515. eta = np.linspace(-10, 10, 5)[None,:]
  2516. p = special.pbvv(eta, x)
  2517. eps = 1e-7 + 1e-7*abs(x)
  2518. dp = (special.pbvv(eta, x + eps)[0] - special.pbvv(eta, x - eps)[0]) / eps / 2.
  2519. assert_allclose(p[1], dp, rtol=1e-6, atol=1e-6)
  2520. class TestPolygamma(object):
  2521. # from Table 6.2 (pg. 271) of A&S
  2522. def test_polygamma(self):
  2523. poly2 = special.polygamma(2,1)
  2524. poly3 = special.polygamma(3,1)
  2525. assert_almost_equal(poly2,-2.4041138063,10)
  2526. assert_almost_equal(poly3,6.4939394023,10)
  2527. # Test polygamma(0, x) == psi(x)
  2528. x = [2, 3, 1.1e14]
  2529. assert_almost_equal(special.polygamma(0, x), special.psi(x))
  2530. # Test broadcasting
  2531. n = [0, 1, 2]
  2532. x = [0.5, 1.5, 2.5]
  2533. expected = [-1.9635100260214238, 0.93480220054467933,
  2534. -0.23620405164172739]
  2535. assert_almost_equal(special.polygamma(n, x), expected)
  2536. expected = np.row_stack([expected]*2)
  2537. assert_almost_equal(special.polygamma(n, np.row_stack([x]*2)),
  2538. expected)
  2539. assert_almost_equal(special.polygamma(np.row_stack([n]*2), x),
  2540. expected)
  2541. class TestProCvSeq(object):
  2542. def test_pro_cv_seq(self):
  2543. prol = special.pro_cv_seq(0,3,1)
  2544. assert_array_almost_equal(prol,array([0.319000,
  2545. 2.593084,
  2546. 6.533471,
  2547. 12.514462]),5)
  2548. class TestPsi(object):
  2549. def test_psi(self):
  2550. ps = special.psi(1)
  2551. assert_almost_equal(ps,-0.57721566490153287,8)
  2552. class TestRadian(object):
  2553. def test_radian(self):
  2554. rad = special.radian(90,0,0)
  2555. assert_almost_equal(rad,pi/2.0,5)
  2556. def test_radianmore(self):
  2557. rad1 = special.radian(90,1,60)
  2558. assert_almost_equal(rad1,pi/2+0.0005816135199345904,5)
  2559. class TestRiccati(object):
  2560. def test_riccati_jn(self):
  2561. N, x = 2, 0.2
  2562. S = np.empty((N, N))
  2563. for n in range(N):
  2564. j = special.spherical_jn(n, x)
  2565. jp = special.spherical_jn(n, x, derivative=True)
  2566. S[0,n] = x*j
  2567. S[1,n] = x*jp + j
  2568. assert_array_almost_equal(S, special.riccati_jn(n, x), 8)
  2569. def test_riccati_yn(self):
  2570. N, x = 2, 0.2
  2571. C = np.empty((N, N))
  2572. for n in range(N):
  2573. y = special.spherical_yn(n, x)
  2574. yp = special.spherical_yn(n, x, derivative=True)
  2575. C[0,n] = x*y
  2576. C[1,n] = x*yp + y
  2577. assert_array_almost_equal(C, special.riccati_yn(n, x), 8)
  2578. class TestRound(object):
  2579. def test_round(self):
  2580. rnd = list(map(int,(special.round(10.1),special.round(10.4),special.round(10.5),special.round(10.6))))
  2581. # Note: According to the documentation, scipy.special.round is
  2582. # supposed to round to the nearest even number if the fractional
  2583. # part is exactly 0.5. On some platforms, this does not appear
  2584. # to work and thus this test may fail. However, this unit test is
  2585. # correctly written.
  2586. rndrl = (10,10,10,11)
  2587. assert_array_equal(rnd,rndrl)
  2588. def test_sph_harm():
  2589. # Tests derived from tables in
  2590. # https://en.wikipedia.org/wiki/Table_of_spherical_harmonics
  2591. sh = special.sph_harm
  2592. pi = np.pi
  2593. exp = np.exp
  2594. sqrt = np.sqrt
  2595. sin = np.sin
  2596. cos = np.cos
  2597. assert_array_almost_equal(sh(0,0,0,0),
  2598. 0.5/sqrt(pi))
  2599. assert_array_almost_equal(sh(-2,2,0.,pi/4),
  2600. 0.25*sqrt(15./(2.*pi)) *
  2601. (sin(pi/4))**2.)
  2602. assert_array_almost_equal(sh(-2,2,0.,pi/2),
  2603. 0.25*sqrt(15./(2.*pi)))
  2604. assert_array_almost_equal(sh(2,2,pi,pi/2),
  2605. 0.25*sqrt(15/(2.*pi)) *
  2606. exp(0+2.*pi*1j)*sin(pi/2.)**2.)
  2607. assert_array_almost_equal(sh(2,4,pi/4.,pi/3.),
  2608. (3./8.)*sqrt(5./(2.*pi)) *
  2609. exp(0+2.*pi/4.*1j) *
  2610. sin(pi/3.)**2. *
  2611. (7.*cos(pi/3.)**2.-1))
  2612. assert_array_almost_equal(sh(4,4,pi/8.,pi/6.),
  2613. (3./16.)*sqrt(35./(2.*pi)) *
  2614. exp(0+4.*pi/8.*1j)*sin(pi/6.)**4.)
  2615. def test_sph_harm_ufunc_loop_selection():
  2616. # see https://github.com/scipy/scipy/issues/4895
  2617. dt = np.dtype(np.complex128)
  2618. assert_equal(special.sph_harm(0, 0, 0, 0).dtype, dt)
  2619. assert_equal(special.sph_harm([0], 0, 0, 0).dtype, dt)
  2620. assert_equal(special.sph_harm(0, [0], 0, 0).dtype, dt)
  2621. assert_equal(special.sph_harm(0, 0, [0], 0).dtype, dt)
  2622. assert_equal(special.sph_harm(0, 0, 0, [0]).dtype, dt)
  2623. assert_equal(special.sph_harm([0], [0], [0], [0]).dtype, dt)
  2624. class TestStruve(object):
  2625. def _series(self, v, z, n=100):
  2626. """Compute Struve function & error estimate from its power series."""
  2627. k = arange(0, n)
  2628. r = (-1)**k * (.5*z)**(2*k+v+1)/special.gamma(k+1.5)/special.gamma(k+v+1.5)
  2629. err = abs(r).max() * finfo(float_).eps * n
  2630. return r.sum(), err
  2631. def test_vs_series(self):
  2632. """Check Struve function versus its power series"""
  2633. for v in [-20, -10, -7.99, -3.4, -1, 0, 1, 3.4, 12.49, 16]:
  2634. for z in [1, 10, 19, 21, 30]:
  2635. value, err = self._series(v, z)
  2636. assert_allclose(special.struve(v, z), value, rtol=0, atol=err), (v, z)
  2637. def test_some_values(self):
  2638. assert_allclose(special.struve(-7.99, 21), 0.0467547614113, rtol=1e-7)
  2639. assert_allclose(special.struve(-8.01, 21), 0.0398716951023, rtol=1e-8)
  2640. assert_allclose(special.struve(-3.0, 200), 0.0142134427432, rtol=1e-12)
  2641. assert_allclose(special.struve(-8.0, -41), 0.0192469727846, rtol=1e-11)
  2642. assert_equal(special.struve(-12, -41), -special.struve(-12, 41))
  2643. assert_equal(special.struve(+12, -41), -special.struve(+12, 41))
  2644. assert_equal(special.struve(-11, -41), +special.struve(-11, 41))
  2645. assert_equal(special.struve(+11, -41), +special.struve(+11, 41))
  2646. assert_(isnan(special.struve(-7.1, -1)))
  2647. assert_(isnan(special.struve(-10.1, -1)))
  2648. def test_regression_679(self):
  2649. """Regression test for #679"""
  2650. assert_allclose(special.struve(-1.0, 20 - 1e-8), special.struve(-1.0, 20 + 1e-8))
  2651. assert_allclose(special.struve(-2.0, 20 - 1e-8), special.struve(-2.0, 20 + 1e-8))
  2652. assert_allclose(special.struve(-4.3, 20 - 1e-8), special.struve(-4.3, 20 + 1e-8))
  2653. def test_chi2_smalldf():
  2654. assert_almost_equal(special.chdtr(0.6,3), 0.957890536704110)
  2655. def test_ch2_inf():
  2656. assert_equal(special.chdtr(0.7,np.inf), 1.0)
  2657. def test_chi2c_smalldf():
  2658. assert_almost_equal(special.chdtrc(0.6,3), 1-0.957890536704110)
  2659. def test_chi2_inv_smalldf():
  2660. assert_almost_equal(special.chdtri(0.6,1-0.957890536704110), 3)
  2661. def test_agm_simple():
  2662. rtol = 1e-13
  2663. # Gauss's constant
  2664. assert_allclose(1/special.agm(1, np.sqrt(2)), 0.834626841674073186,
  2665. rtol=rtol)
  2666. # These values were computed using Wolfram Alpha, with the
  2667. # function ArithmeticGeometricMean[a, b].
  2668. agm13 = 1.863616783244897
  2669. agm15 = 2.604008190530940
  2670. agm35 = 3.936235503649555
  2671. assert_allclose(special.agm([[1], [3]], [1, 3, 5]),
  2672. [[1, agm13, agm15],
  2673. [agm13, 3, agm35]], rtol=rtol)
  2674. # Computed by the iteration formula using mpmath,
  2675. # with mpmath.mp.prec = 1000:
  2676. agm12 = 1.4567910310469068
  2677. assert_allclose(special.agm(1, 2), agm12, rtol=rtol)
  2678. assert_allclose(special.agm(2, 1), agm12, rtol=rtol)
  2679. assert_allclose(special.agm(-1, -2), -agm12, rtol=rtol)
  2680. assert_allclose(special.agm(24, 6), 13.458171481725614, rtol=rtol)
  2681. assert_allclose(special.agm(13, 123456789.5), 11111458.498599306,
  2682. rtol=rtol)
  2683. assert_allclose(special.agm(1e30, 1), 2.229223055945383e+28, rtol=rtol)
  2684. assert_allclose(special.agm(1e-22, 1), 0.030182566420169886, rtol=rtol)
  2685. assert_allclose(special.agm(1e150, 1e180), 2.229223055945383e+178,
  2686. rtol=rtol)
  2687. assert_allclose(special.agm(1e180, 1e-150), 2.0634722510162677e+177,
  2688. rtol=rtol)
  2689. assert_allclose(special.agm(1e-150, 1e-170), 3.3112619670463756e-152,
  2690. rtol=rtol)
  2691. fi = np.finfo(1.0)
  2692. assert_allclose(special.agm(fi.tiny, fi.max), 1.9892072050015473e+305,
  2693. rtol=rtol)
  2694. assert_allclose(special.agm(0.75*fi.max, fi.max), 1.564904312298045e+308,
  2695. rtol=rtol)
  2696. assert_allclose(special.agm(fi.tiny, 3*fi.tiny), 4.1466849866735005e-308,
  2697. rtol=rtol)
  2698. # zero, nan and inf cases.
  2699. assert_equal(special.agm(0, 0), 0)
  2700. assert_equal(special.agm(99, 0), 0)
  2701. assert_equal(special.agm(-1, 10), np.nan)
  2702. assert_equal(special.agm(0, np.inf), np.nan)
  2703. assert_equal(special.agm(np.inf, 0), np.nan)
  2704. assert_equal(special.agm(0, -np.inf), np.nan)
  2705. assert_equal(special.agm(-np.inf, 0), np.nan)
  2706. assert_equal(special.agm(np.inf, -np.inf), np.nan)
  2707. assert_equal(special.agm(-np.inf, np.inf), np.nan)
  2708. assert_equal(special.agm(1, np.nan), np.nan)
  2709. assert_equal(special.agm(np.nan, -1), np.nan)
  2710. assert_equal(special.agm(1, np.inf), np.inf)
  2711. assert_equal(special.agm(np.inf, 1), np.inf)
  2712. assert_equal(special.agm(-1, -np.inf), -np.inf)
  2713. assert_equal(special.agm(-np.inf, -1), -np.inf)
  2714. def test_legacy():
  2715. # Legacy behavior: truncating arguments to integers
  2716. with suppress_warnings() as sup:
  2717. sup.filter(RuntimeWarning, "floating point number truncated to an integer")
  2718. assert_equal(special.bdtrc(1, 2, 0.3), special.bdtrc(1.8, 2.8, 0.3))
  2719. assert_equal(special.bdtr(1, 2, 0.3), special.bdtr(1.8, 2.8, 0.3))
  2720. assert_equal(special.bdtri(1, 2, 0.3), special.bdtri(1.8, 2.8, 0.3))
  2721. assert_equal(special.expn(1, 0.3), special.expn(1.8, 0.3))
  2722. assert_equal(special.nbdtrc(1, 2, 0.3), special.nbdtrc(1.8, 2.8, 0.3))
  2723. assert_equal(special.nbdtr(1, 2, 0.3), special.nbdtr(1.8, 2.8, 0.3))
  2724. assert_equal(special.nbdtri(1, 2, 0.3), special.nbdtri(1.8, 2.8, 0.3))
  2725. assert_equal(special.pdtrc(1, 0.3), special.pdtrc(1.8, 0.3))
  2726. assert_equal(special.pdtr(1, 0.3), special.pdtr(1.8, 0.3))
  2727. assert_equal(special.pdtri(1, 0.3), special.pdtri(1.8, 0.3))
  2728. assert_equal(special.kn(1, 0.3), special.kn(1.8, 0.3))
  2729. assert_equal(special.yn(1, 0.3), special.yn(1.8, 0.3))
  2730. assert_equal(special.smirnov(1, 0.3), special.smirnov(1.8, 0.3))
  2731. assert_equal(special.smirnovi(1, 0.3), special.smirnovi(1.8, 0.3))
  2732. @with_special_errors
  2733. def test_error_raising():
  2734. assert_raises(special.SpecialFunctionError, special.iv, 1, 1e99j)
  2735. def test_xlogy():
  2736. def xfunc(x, y):
  2737. with np.errstate(invalid='ignore'):
  2738. if x == 0 and not np.isnan(y):
  2739. return x
  2740. else:
  2741. return x*np.log(y)
  2742. z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0)], dtype=float)
  2743. z2 = np.r_[z1, [(0, 1j), (1, 1j)]]
  2744. w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1])
  2745. assert_func_equal(special.xlogy, w1, z1, rtol=1e-13, atol=1e-13)
  2746. w2 = np.vectorize(xfunc)(z2[:,0], z2[:,1])
  2747. assert_func_equal(special.xlogy, w2, z2, rtol=1e-13, atol=1e-13)
  2748. def test_xlog1py():
  2749. def xfunc(x, y):
  2750. with np.errstate(invalid='ignore'):
  2751. if x == 0 and not np.isnan(y):
  2752. return x
  2753. else:
  2754. return x * np.log1p(y)
  2755. z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0),
  2756. (1, 1e-30)], dtype=float)
  2757. w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1])
  2758. assert_func_equal(special.xlog1py, w1, z1, rtol=1e-13, atol=1e-13)
  2759. def test_entr():
  2760. def xfunc(x):
  2761. if x < 0:
  2762. return -np.inf
  2763. else:
  2764. return -special.xlogy(x, x)
  2765. values = (0, 0.5, 1.0, np.inf)
  2766. signs = [-1, 1]
  2767. arr = []
  2768. for sgn, v in itertools.product(signs, values):
  2769. arr.append(sgn * v)
  2770. z = np.array(arr, dtype=float)
  2771. w = np.vectorize(xfunc, otypes=[np.float64])(z)
  2772. assert_func_equal(special.entr, w, z, rtol=1e-13, atol=1e-13)
  2773. def test_kl_div():
  2774. def xfunc(x, y):
  2775. if x < 0 or y < 0 or (y == 0 and x != 0):
  2776. # extension of natural domain to preserve convexity
  2777. return np.inf
  2778. elif np.isposinf(x) or np.isposinf(y):
  2779. # limits within the natural domain
  2780. return np.inf
  2781. elif x == 0:
  2782. return y
  2783. else:
  2784. return special.xlogy(x, x/y) - x + y
  2785. values = (0, 0.5, 1.0)
  2786. signs = [-1, 1]
  2787. arr = []
  2788. for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values):
  2789. arr.append((sgna*va, sgnb*vb))
  2790. z = np.array(arr, dtype=float)
  2791. w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
  2792. assert_func_equal(special.kl_div, w, z, rtol=1e-13, atol=1e-13)
  2793. def test_rel_entr():
  2794. def xfunc(x, y):
  2795. if x > 0 and y > 0:
  2796. return special.xlogy(x, x/y)
  2797. elif x == 0 and y >= 0:
  2798. return 0
  2799. else:
  2800. return np.inf
  2801. values = (0, 0.5, 1.0)
  2802. signs = [-1, 1]
  2803. arr = []
  2804. for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values):
  2805. arr.append((sgna*va, sgnb*vb))
  2806. z = np.array(arr, dtype=float)
  2807. w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
  2808. assert_func_equal(special.rel_entr, w, z, rtol=1e-13, atol=1e-13)
  2809. def test_huber():
  2810. assert_equal(special.huber(-1, 1.5), np.inf)
  2811. assert_allclose(special.huber(2, 1.5), 0.5 * np.square(1.5))
  2812. assert_allclose(special.huber(2, 2.5), 2 * (2.5 - 0.5 * 2))
  2813. def xfunc(delta, r):
  2814. if delta < 0:
  2815. return np.inf
  2816. elif np.abs(r) < delta:
  2817. return 0.5 * np.square(r)
  2818. else:
  2819. return delta * (np.abs(r) - 0.5 * delta)
  2820. z = np.random.randn(10, 2)
  2821. w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
  2822. assert_func_equal(special.huber, w, z, rtol=1e-13, atol=1e-13)
  2823. def test_pseudo_huber():
  2824. def xfunc(delta, r):
  2825. if delta < 0:
  2826. return np.inf
  2827. elif (not delta) or (not r):
  2828. return 0
  2829. else:
  2830. return delta**2 * (np.sqrt(1 + (r/delta)**2) - 1)
  2831. z = np.array(np.random.randn(10, 2).tolist() + [[0, 0.5], [0.5, 0]])
  2832. w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
  2833. assert_func_equal(special.pseudo_huber, w, z, rtol=1e-13, atol=1e-13)