test_digamma.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. from __future__ import division, print_function, absolute_import
  2. import numpy as np
  3. from numpy import pi, log, sqrt
  4. from numpy.testing import assert_, assert_equal
  5. from scipy.special._testutils import FuncData
  6. import scipy.special as sc
  7. # Euler-Mascheroni constant
  8. euler = 0.57721566490153286
  9. def test_consistency():
  10. # Make sure the implementation of digamma for real arguments
  11. # agrees with the implementation of digamma for complex arguments.
  12. # It's all poles after -1e16
  13. x = np.r_[-np.logspace(15, -30, 200), np.logspace(-30, 300, 200)]
  14. dataset = np.vstack((x + 0j, sc.digamma(x))).T
  15. FuncData(sc.digamma, dataset, 0, 1, rtol=5e-14, nan_ok=True).check()
  16. def test_special_values():
  17. # Test special values from Gauss's digamma theorem. See
  18. #
  19. # https://en.wikipedia.org/wiki/Digamma_function
  20. dataset = [(1, -euler),
  21. (0.5, -2*log(2) - euler),
  22. (1/3, -pi/(2*sqrt(3)) - 3*log(3)/2 - euler),
  23. (1/4, -pi/2 - 3*log(2) - euler),
  24. (1/6, -pi*sqrt(3)/2 - 2*log(2) - 3*log(3)/2 - euler),
  25. (1/8, -pi/2 - 4*log(2) - (pi + log(2 + sqrt(2)) - log(2 - sqrt(2)))/sqrt(2) - euler)]
  26. dataset = np.asarray(dataset)
  27. FuncData(sc.digamma, dataset, 0, 1, rtol=1e-14).check()
  28. def test_nonfinite():
  29. pts = [0.0, -0.0, np.inf]
  30. std = [-np.inf, np.inf, np.inf]
  31. assert_equal(sc.digamma(pts), std)
  32. assert_(all(np.isnan(sc.digamma([-np.inf, -1]))))