test_kolmogorov.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. from __future__ import division, print_function, absolute_import
  2. import itertools
  3. import sys
  4. import pytest
  5. import numpy as np
  6. from numpy.testing import assert_
  7. from scipy.special._testutils import FuncData
  8. from scipy.special import kolmogorov, kolmogi, smirnov, smirnovi
  9. from scipy.special._ufuncs import (_kolmogc, _kolmogci, _kolmogp,
  10. _smirnovc, _smirnovci, _smirnovp)
  11. _rtol = 1e-10
  12. class TestSmirnov(object):
  13. def test_nan(self):
  14. assert_(np.isnan(smirnov(1, np.nan)))
  15. def test_basic(self):
  16. dataset = [(1, 0.1, 0.9),
  17. (1, 0.875, 0.125),
  18. (2, 0.875, 0.125 * 0.125),
  19. (3, 0.875, 0.125 * 0.125 * 0.125)]
  20. dataset = np.asarray(dataset)
  21. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  22. dataset[:, -1] = 1 - dataset[:, -1]
  23. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  24. def test_x_equals_0(self):
  25. dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  26. dataset = np.asarray(dataset)
  27. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  28. dataset[:, -1] = 1 - dataset[:, -1]
  29. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  30. def test_x_equals_1(self):
  31. dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  32. dataset = np.asarray(dataset)
  33. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  34. dataset[:, -1] = 1 - dataset[:, -1]
  35. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  36. def test_x_equals_0point5(self):
  37. dataset = [(1, 0.5, 0.5),
  38. (2, 0.5, 0.25),
  39. (3, 0.5, 0.166666666667),
  40. (4, 0.5, 0.09375),
  41. (5, 0.5, 0.056),
  42. (6, 0.5, 0.0327932098765),
  43. (7, 0.5, 0.0191958707681),
  44. (8, 0.5, 0.0112953186035),
  45. (9, 0.5, 0.00661933257355),
  46. (10, 0.5, 0.003888705)]
  47. dataset = np.asarray(dataset)
  48. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  49. dataset[:, -1] = 1 - dataset[:, -1]
  50. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  51. def test_n_equals_1(self):
  52. x = np.linspace(0, 1, 101, endpoint=True)
  53. dataset = np.column_stack([[1]*len(x), x, 1-x])
  54. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  55. dataset[:, -1] = 1 - dataset[:, -1]
  56. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  57. def test_n_equals_2(self):
  58. x = np.linspace(0.5, 1, 101, endpoint=True)
  59. p = np.power(1-x, 2)
  60. n = np.array([2] * len(x))
  61. dataset = np.column_stack([n, x, p])
  62. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  63. dataset[:, -1] = 1 - dataset[:, -1]
  64. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  65. def test_n_equals_3(self):
  66. x = np.linspace(0.7, 1, 31, endpoint=True)
  67. p = np.power(1-x, 3)
  68. n = np.array([3] * len(x))
  69. dataset = np.column_stack([n, x, p])
  70. FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  71. dataset[:, -1] = 1 - dataset[:, -1]
  72. FuncData(_smirnovc, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  73. def test_n_large(self):
  74. # test for large values of n
  75. # Probabilities should go down as n goes up
  76. x = 0.4
  77. pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)])
  78. dfs = np.diff(pvals)
  79. assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs)
  80. class TestSmirnovi(object):
  81. def test_nan(self):
  82. assert_(np.isnan(smirnovi(1, np.nan)))
  83. def test_basic(self):
  84. dataset = [(1, 0.4, 0.6),
  85. (1, 0.6, 0.4),
  86. (1, 0.99, 0.01),
  87. (1, 0.01, 0.99),
  88. (2, 0.125 * 0.125, 0.875),
  89. (3, 0.125 * 0.125 * 0.125, 0.875),
  90. (10, 1.0 / 16 ** 10, 1 - 1.0 / 16)]
  91. dataset = np.asarray(dataset)
  92. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  93. dataset[:, 1] = 1 - dataset[:, 1]
  94. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  95. def test_x_equals_0(self):
  96. dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  97. dataset = np.asarray(dataset)
  98. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  99. dataset[:, 1] = 1 - dataset[:, 1]
  100. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  101. def test_x_equals_1(self):
  102. dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
  103. dataset = np.asarray(dataset)
  104. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  105. dataset[:, 1] = 1 - dataset[:, 1]
  106. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  107. def test_n_equals_1(self):
  108. pp = np.linspace(0, 1, 101, endpoint=True)
  109. # dataset = np.array([(1, p, 1-p) for p in pp])
  110. dataset = np.column_stack([[1]*len(pp), pp, 1-pp])
  111. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  112. dataset[:, 1] = 1 - dataset[:, 1]
  113. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  114. def test_n_equals_2(self):
  115. x = np.linspace(0.5, 1, 101, endpoint=True)
  116. p = np.power(1-x, 2)
  117. n = np.array([2] * len(x))
  118. dataset = np.column_stack([n, p, x])
  119. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  120. dataset[:, 1] = 1 - dataset[:, 1]
  121. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  122. def test_n_equals_3(self):
  123. x = np.linspace(0.7, 1, 31, endpoint=True)
  124. p = np.power(1-x, 3)
  125. n = np.array([3] * len(x))
  126. dataset = np.column_stack([n, p, x])
  127. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  128. dataset[:, 1] = 1 - dataset[:, 1]
  129. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  130. def test_round_trip(self):
  131. def _sm_smi(n, p):
  132. return smirnov(n, smirnovi(n, p))
  133. def _smc_smci(n, p):
  134. return _smirnovc(n, _smirnovci(n, p))
  135. dataset = [(1, 0.4, 0.4),
  136. (1, 0.6, 0.6),
  137. (2, 0.875, 0.875),
  138. (3, 0.875, 0.875),
  139. (3, 0.125, 0.125),
  140. (10, 0.999, 0.999),
  141. (10, 0.0001, 0.0001)]
  142. dataset = np.asarray(dataset)
  143. FuncData(_sm_smi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  144. FuncData(_smc_smci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  145. def test_x_equals_0point5(self):
  146. dataset = [(1, 0.5, 0.5),
  147. (2, 0.5, 0.366025403784),
  148. (2, 0.25, 0.5),
  149. (3, 0.5, 0.297156508177),
  150. (4, 0.5, 0.255520481121),
  151. (5, 0.5, 0.234559536069),
  152. (6, 0.5, 0.21715965898),
  153. (7, 0.5, 0.202722580034),
  154. (8, 0.5, 0.190621765256),
  155. (9, 0.5, 0.180363501362),
  156. (10, 0.5, 0.17157867006)]
  157. dataset = np.asarray(dataset)
  158. FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  159. dataset[:, 1] = 1 - dataset[:, 1]
  160. FuncData(_smirnovci, dataset, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  161. class TestSmirnovp(object):
  162. def test_nan(self):
  163. assert_(np.isnan(_smirnovp(1, np.nan)))
  164. def test_basic(self):
  165. # Check derivative at endpoints
  166. n1_10 = np.arange(1, 10)
  167. dataset0 = np.column_stack([n1_10, np.full_like(n1_10, 0), np.full_like(n1_10, -1)])
  168. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  169. n2_10 = np.arange(2, 10)
  170. dataset1 = np.column_stack([n2_10, np.full_like(n2_10, 1.0), np.full_like(n2_10, 0)])
  171. FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  172. def test_oneminusoneovern(self):
  173. # Check derivative at x=1-1/n
  174. n = np.arange(1, 20)
  175. x = 1.0/n
  176. xm1 = 1-1.0/n
  177. pp1 = -n * x**(n-1)
  178. pp1 -= (1-np.sign(n-2)**2) * 0.5 # n=2, x=0.5, 1-1/n = 0.5, need to adjust
  179. dataset1 = np.column_stack([n, xm1, pp1])
  180. FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  181. def test_oneovertwon(self):
  182. # Check derivative at x=1/2n (Discontinuous at x=1/n, so check at x=1/2n)
  183. n = np.arange(1, 20)
  184. x = 1.0/2/n
  185. pp = -(n*x+1) * (1+x)**(n-2)
  186. dataset0 = np.column_stack([n, x, pp])
  187. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  188. def test_oneovern(self):
  189. # Check derivative at x=1/n (Discontinuous at x=1/n, hard to tell if x==1/n, only use n=power of 2)
  190. n = 2**np.arange(1, 10)
  191. x = 1.0/n
  192. pp = -(n*x+1) * (1+x)**(n-2) + 0.5
  193. dataset0 = np.column_stack([n, x, pp])
  194. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  195. @pytest.mark.xfail(sys.maxsize <= 2**32,
  196. reason="requires 64-bit platform")
  197. def test_oneovernclose(self):
  198. # Check derivative at x=1/n (Discontinuous at x=1/n, test on either side: x=1/n +/- 2epsilon)
  199. n = np.arange(3, 20)
  200. x = 1.0/n - 2*np.finfo(float).eps
  201. pp = -(n*x+1) * (1+x)**(n-2)
  202. dataset0 = np.column_stack([n, x, pp])
  203. FuncData(_smirnovp, dataset0, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  204. x = 1.0/n + 2*np.finfo(float).eps
  205. pp = -(n*x+1) * (1+x)**(n-2) + 1
  206. dataset1 = np.column_stack([n, x, pp])
  207. FuncData(_smirnovp, dataset1, (0, 1), 2, rtol=_rtol).check(dtypes=[int, float, float])
  208. class TestKolmogorov(object):
  209. def test_nan(self):
  210. assert_(np.isnan(kolmogorov(np.nan)))
  211. def test_basic(self):
  212. dataset = [(0, 1.0),
  213. (0.5, 0.96394524366487511),
  214. (0.8275735551899077, 0.5000000000000000),
  215. (1, 0.26999967167735456),
  216. (2, 0.00067092525577969533)]
  217. dataset = np.asarray(dataset)
  218. FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
  219. def test_linspace(self):
  220. x = np.linspace(0, 2.0, 21)
  221. dataset = [1.0000000000000000, 1.0000000000000000, 0.9999999999994950,
  222. 0.9999906941986655, 0.9971923267772983, 0.9639452436648751,
  223. 0.8642827790506042, 0.7112351950296890, 0.5441424115741981,
  224. 0.3927307079406543, 0.2699996716773546, 0.1777181926064012,
  225. 0.1122496666707249, 0.0680922218447664, 0.0396818795381144,
  226. 0.0222179626165251, 0.0119520432391966, 0.0061774306344441,
  227. 0.0030676213475797, 0.0014636048371873, 0.0006709252557797]
  228. dataset_c = [0.0000000000000000, 6.609305242245699e-53, 5.050407338670114e-13,
  229. 9.305801334566668e-06, 0.0028076732227017, 0.0360547563351249,
  230. 0.1357172209493958, 0.2887648049703110, 0.4558575884258019,
  231. 0.6072692920593457, 0.7300003283226455, 0.8222818073935988,
  232. 0.8877503333292751, 0.9319077781552336, 0.9603181204618857,
  233. 0.9777820373834749, 0.9880479567608034, 0.9938225693655559,
  234. 0.9969323786524203, 0.9985363951628127, 0.9993290747442203]
  235. dataset = np.column_stack([x, dataset])
  236. FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
  237. dataset_c = np.column_stack([x, dataset_c])
  238. FuncData(_kolmogc, dataset_c, (0,), 1, rtol=_rtol).check()
  239. def test_linspacei(self):
  240. p = np.linspace(0, 1.0, 21, endpoint=True)
  241. dataset = [np.inf, 1.3580986393225507, 1.2238478702170823,
  242. 1.1379465424937751, 1.0727491749396481, 1.0191847202536859,
  243. 0.9730633753323726, 0.9320695842357622, 0.8947644549851197,
  244. 0.8601710725555463, 0.8275735551899077, 0.7964065373291559,
  245. 0.7661855555617682, 0.7364542888171910, 0.7067326523068980,
  246. 0.6764476915028201, 0.6448126061663567, 0.6105590999244391,
  247. 0.5711732651063401, 0.5196103791686224, 0.0000000000000000]
  248. dataset_c = [0.0000000000000000, 0.5196103791686225, 0.5711732651063401,
  249. 0.6105590999244391, 0.6448126061663567, 0.6764476915028201,
  250. 0.7067326523068980, 0.7364542888171910, 0.7661855555617682,
  251. 0.7964065373291559, 0.8275735551899077, 0.8601710725555463,
  252. 0.8947644549851196, 0.9320695842357622, 0.9730633753323727,
  253. 1.0191847202536859, 1.0727491749396481, 1.1379465424937754,
  254. 1.2238478702170825, 1.3580986393225509, np.inf]
  255. dataset = np.column_stack([p[1:], dataset[1:]])
  256. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  257. dataset_c = np.column_stack([p[:-1], dataset_c[:-1]])
  258. FuncData(_kolmogci, dataset_c, (0,), 1, rtol=_rtol).check()
  259. def test_smallx(self):
  260. epsilon = 0.1 ** np.arange(1, 14)
  261. x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217,
  262. 0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254,
  263. 0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658,
  264. 0.19487060742])
  265. dataset = np.column_stack([x, 1-epsilon])
  266. FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
  267. def test_round_trip(self):
  268. def _ki_k(_x):
  269. return kolmogi(kolmogorov(_x))
  270. def _kci_kc(_x):
  271. return _kolmogci(_kolmogc(_x))
  272. x = np.linspace(0.0, 2.0, 21, endpoint=True)
  273. x02 = x[(x == 0) | (x > 0.21)] # Exclude 0.1, 0.2. 0.2 almost makes succeeds, but 0.1 has no chance.
  274. dataset02 = np.column_stack([x02, x02])
  275. FuncData(_ki_k, dataset02, (0,), 1, rtol=_rtol).check()
  276. dataset = np.column_stack([x, x])
  277. FuncData(_kci_kc, dataset, (0,), 1, rtol=_rtol).check()
  278. class TestKolmogi(object):
  279. def test_nan(self):
  280. assert_(np.isnan(kolmogi(np.nan)))
  281. def test_basic(self):
  282. dataset = [(1.0, 0),
  283. (0.96394524366487511, 0.5),
  284. (0.9, 0.571173265106),
  285. (0.5000000000000000, 0.8275735551899077),
  286. (0.26999967167735456, 1),
  287. (0.00067092525577969533, 2)]
  288. dataset = np.asarray(dataset)
  289. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  290. def test_smallpcdf(self):
  291. epsilon = 0.5 ** np.arange(1, 55, 3)
  292. # kolmogi(1-p) == _kolmogci(p) if 1-(1-p) == p, but not necessarily otherwise
  293. # Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results
  294. x = np.array([0.8275735551899077, 0.5345255069097583, 0.4320114038786941,
  295. 0.3736868442620478, 0.3345161714909591, 0.3057833329315859,
  296. 0.2835052890528936, 0.2655578150208676, 0.2506869966107999,
  297. 0.2380971058736669, 0.2272549289962079, 0.2177876361600040,
  298. 0.2094254686862041, 0.2019676748836232, 0.1952612948137504,
  299. 0.1891874239646641, 0.1836520225050326, 0.1785795904846466])
  300. dataset = np.column_stack([1-epsilon, x])
  301. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  302. dataset = np.column_stack([epsilon, x])
  303. FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
  304. def test_smallpsf(self):
  305. epsilon = 0.5 ** np.arange(1, 55, 3)
  306. # kolmogi(p) == _kolmogci(1-p) if 1-(1-p) == p, but not necessarily otherwise
  307. # Use epsilon s.t. 1-(1-epsilon)) == epsilon, so can use same x-array for both results
  308. x = np.array([0.8275735551899077, 1.3163786275161036, 1.6651092133663343,
  309. 1.9525136345289607, 2.2027324540033235, 2.4272929437460848,
  310. 2.6327688477341593, 2.8233300509220260, 3.0018183401530627,
  311. 3.1702735084088891, 3.3302184446307912, 3.4828258153113318,
  312. 3.6290214150152051, 3.7695513262825959, 3.9050272690877326,
  313. 4.0359582187082550, 4.1627730557884890, 4.2858371743264527])
  314. dataset = np.column_stack([epsilon, x])
  315. FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
  316. dataset = np.column_stack([1-epsilon, x])
  317. FuncData(_kolmogci, dataset, (0,), 1, rtol=_rtol).check()
  318. def test_round_trip(self):
  319. def _k_ki(_p):
  320. return kolmogorov(kolmogi(_p))
  321. p = np.linspace(0.1, 1.0, 10, endpoint=True)
  322. dataset = np.column_stack([p, p])
  323. FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check()
  324. class TestKolmogp(object):
  325. def test_nan(self):
  326. assert_(np.isnan(_kolmogp(np.nan)))
  327. def test_basic(self):
  328. dataset = [(0.000000, -0.0),
  329. (0.200000, -1.532420541338916e-10),
  330. (0.400000, -0.1012254419260496),
  331. (0.600000, -1.324123244249925),
  332. (0.800000, -1.627024345636592),
  333. (1.000000, -1.071948558356941),
  334. (1.200000, -0.538512430720529),
  335. (1.400000, -0.2222133182429472),
  336. (1.600000, -0.07649302775520538),
  337. (1.800000, -0.02208687346347873),
  338. (2.000000, -0.005367402045629683)]
  339. dataset = np.asarray(dataset)
  340. FuncData(_kolmogp, dataset, (0,), 1, rtol=_rtol).check()