123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- from __future__ import division, print_function, absolute_import
- import pickle
- import numpy as np
- import numpy.testing as npt
- from numpy.testing import assert_allclose, assert_equal
- from scipy._lib._numpy_compat import suppress_warnings
- from pytest import raises as assert_raises
- import numpy.ma.testutils as ma_npt
- from scipy._lib._util import getargspec_no_self as _getargspec
- from scipy import stats
- def check_named_results(res, attributes, ma=False):
- for i, attr in enumerate(attributes):
- if ma:
- ma_npt.assert_equal(res[i], getattr(res, attr))
- else:
- npt.assert_equal(res[i], getattr(res, attr))
- def check_normalization(distfn, args, distname):
- norm_moment = distfn.moment(0, *args)
- npt.assert_allclose(norm_moment, 1.0)
- # this is a temporary plug: either ncf or expect is problematic;
- # best be marked as a knownfail, but I've no clue how to do it.
- if distname == "ncf":
- atol, rtol = 1e-5, 0
- else:
- atol, rtol = 1e-7, 1e-7
- normalization_expect = distfn.expect(lambda x: 1, args=args)
- npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol,
- err_msg=distname, verbose=True)
- normalization_cdf = distfn.cdf(distfn.b, *args)
- npt.assert_allclose(normalization_cdf, 1.0)
- def check_moment(distfn, arg, m, v, msg):
- m1 = distfn.moment(1, *arg)
- m2 = distfn.moment(2, *arg)
- if not np.isinf(m):
- npt.assert_almost_equal(m1, m, decimal=10, err_msg=msg +
- ' - 1st moment')
- else: # or np.isnan(m1),
- npt.assert_(np.isinf(m1),
- msg + ' - 1st moment -infinite, m1=%s' % str(m1))
- if not np.isinf(v):
- npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10, err_msg=msg +
- ' - 2ndt moment')
- else: # or np.isnan(m2),
- npt.assert_(np.isinf(m2),
- msg + ' - 2nd moment -infinite, m2=%s' % str(m2))
- def check_mean_expect(distfn, arg, m, msg):
- if np.isfinite(m):
- m1 = distfn.expect(lambda x: x, arg)
- npt.assert_almost_equal(m1, m, decimal=5, err_msg=msg +
- ' - 1st moment (expect)')
- def check_var_expect(distfn, arg, m, v, msg):
- if np.isfinite(v):
- m2 = distfn.expect(lambda x: x*x, arg)
- npt.assert_almost_equal(m2, v + m*m, decimal=5, err_msg=msg +
- ' - 2st moment (expect)')
- def check_skew_expect(distfn, arg, m, v, s, msg):
- if np.isfinite(s):
- m3e = distfn.expect(lambda x: np.power(x-m, 3), arg)
- npt.assert_almost_equal(m3e, s * np.power(v, 1.5),
- decimal=5, err_msg=msg + ' - skew')
- else:
- npt.assert_(np.isnan(s))
- def check_kurt_expect(distfn, arg, m, v, k, msg):
- if np.isfinite(k):
- m4e = distfn.expect(lambda x: np.power(x-m, 4), arg)
- npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2), atol=1e-5, rtol=1e-5,
- err_msg=msg + ' - kurtosis')
- elif not np.isposinf(k):
- npt.assert_(np.isnan(k))
- def check_entropy(distfn, arg, msg):
- ent = distfn.entropy(*arg)
- npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
- def check_private_entropy(distfn, args, superclass):
- # compare a generic _entropy with the distribution-specific implementation
- npt.assert_allclose(distfn._entropy(*args),
- superclass._entropy(distfn, *args))
- def check_entropy_vect_scale(distfn, arg):
- # check 2-d
- sc = np.asarray([[1, 2], [3, 4]])
- v_ent = distfn.entropy(*arg, scale=sc)
- s_ent = [distfn.entropy(*arg, scale=s) for s in sc.ravel()]
- s_ent = np.asarray(s_ent).reshape(v_ent.shape)
- assert_allclose(v_ent, s_ent, atol=1e-14)
- # check invalid value, check cast
- sc = [1, 2, -3]
- v_ent = distfn.entropy(*arg, scale=sc)
- s_ent = [distfn.entropy(*arg, scale=s) for s in sc]
- s_ent = np.asarray(s_ent).reshape(v_ent.shape)
- assert_allclose(v_ent, s_ent, atol=1e-14)
- def check_edge_support(distfn, args):
- # Make sure that x=self.a and self.b are handled correctly.
- x = [distfn.a, distfn.b]
- if isinstance(distfn, stats.rv_discrete):
- x = [distfn.a - 1, distfn.b]
- npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
- npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
- if distfn.name not in ('skellam', 'dlaplace'):
- # with a = -inf, log(0) generates warnings
- npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
- npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
- npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
- npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
- # out-of-bounds for isf & ppf
- npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
- npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all())
- def check_named_args(distfn, x, shape_args, defaults, meths):
- ## Check calling w/ named arguments.
- # check consistency of shapes, numargs and _parse signature
- signature = _getargspec(distfn._parse_args)
- npt.assert_(signature.varargs is None)
- npt.assert_(signature.keywords is None)
- npt.assert_(list(signature.defaults) == list(defaults))
- shape_argnames = signature.args[:-len(defaults)] # a, b, loc=0, scale=1
- if distfn.shapes:
- shapes_ = distfn.shapes.replace(',', ' ').split()
- else:
- shapes_ = ''
- npt.assert_(len(shapes_) == distfn.numargs)
- npt.assert_(len(shapes_) == len(shape_argnames))
- # check calling w/ named arguments
- shape_args = list(shape_args)
- vals = [meth(x, *shape_args) for meth in meths]
- npt.assert_(np.all(np.isfinite(vals)))
- names, a, k = shape_argnames[:], shape_args[:], {}
- while names:
- k.update({names.pop(): a.pop()})
- v = [meth(x, *a, **k) for meth in meths]
- npt.assert_array_equal(vals, v)
- if 'n' not in k.keys():
- # `n` is first parameter of moment(), so can't be used as named arg
- npt.assert_equal(distfn.moment(1, *a, **k),
- distfn.moment(1, *shape_args))
- # unknown arguments should not go through:
- k.update({'kaboom': 42})
- assert_raises(TypeError, distfn.cdf, x, **k)
- def check_random_state_property(distfn, args):
- # check the random_state attribute of a distribution *instance*
- # This test fiddles with distfn.random_state. This breaks other tests,
- # hence need to save it and then restore.
- rndm = distfn.random_state
- # baseline: this relies on the global state
- np.random.seed(1234)
- distfn.random_state = None
- r0 = distfn.rvs(*args, size=8)
- # use an explicit instance-level random_state
- distfn.random_state = 1234
- r1 = distfn.rvs(*args, size=8)
- npt.assert_equal(r0, r1)
- distfn.random_state = np.random.RandomState(1234)
- r2 = distfn.rvs(*args, size=8)
- npt.assert_equal(r0, r2)
- # can override the instance-level random_state for an individual .rvs call
- distfn.random_state = 2
- orig_state = distfn.random_state.get_state()
- r3 = distfn.rvs(*args, size=8, random_state=np.random.RandomState(1234))
- npt.assert_equal(r0, r3)
- # ... and that does not alter the instance-level random_state!
- npt.assert_equal(distfn.random_state.get_state(), orig_state)
- # finally, restore the random_state
- distfn.random_state = rndm
- def check_meth_dtype(distfn, arg, meths):
- q0 = [0.25, 0.5, 0.75]
- x0 = distfn.ppf(q0, *arg)
- x_cast = [x0.astype(tp) for tp in
- (np.int_, np.float16, np.float32, np.float64)]
- for x in x_cast:
- # casting may have clipped the values, exclude those
- distfn._argcheck(*arg)
- x = x[(distfn.a < x) & (x < distfn.b)]
- for meth in meths:
- val = meth(x, *arg)
- npt.assert_(val.dtype == np.float_)
- def check_ppf_dtype(distfn, arg):
- q0 = np.asarray([0.25, 0.5, 0.75])
- q_cast = [q0.astype(tp) for tp in (np.float16, np.float32, np.float64)]
- for q in q_cast:
- for meth in [distfn.ppf, distfn.isf]:
- val = meth(q, *arg)
- npt.assert_(val.dtype == np.float_)
- def check_cmplx_deriv(distfn, arg):
- # Distributions allow complex arguments.
- def deriv(f, x, *arg):
- x = np.asarray(x)
- h = 1e-10
- return (f(x + h*1j, *arg)/h).imag
- x0 = distfn.ppf([0.25, 0.51, 0.75], *arg)
- x_cast = [x0.astype(tp) for tp in
- (np.int_, np.float16, np.float32, np.float64)]
- for x in x_cast:
- # casting may have clipped the values, exclude those
- distfn._argcheck(*arg)
- x = x[(distfn.a < x) & (x < distfn.b)]
- pdf, cdf, sf = distfn.pdf(x, *arg), distfn.cdf(x, *arg), distfn.sf(x, *arg)
- assert_allclose(deriv(distfn.cdf, x, *arg), pdf, rtol=1e-5)
- assert_allclose(deriv(distfn.logcdf, x, *arg), pdf/cdf, rtol=1e-5)
- assert_allclose(deriv(distfn.sf, x, *arg), -pdf, rtol=1e-5)
- assert_allclose(deriv(distfn.logsf, x, *arg), -pdf/sf, rtol=1e-5)
- assert_allclose(deriv(distfn.logpdf, x, *arg),
- deriv(distfn.pdf, x, *arg) / distfn.pdf(x, *arg),
- rtol=1e-5)
- def check_pickling(distfn, args):
- # check that a distribution instance pickles and unpickles
- # pay special attention to the random_state property
- # save the random_state (restore later)
- rndm = distfn.random_state
- distfn.random_state = 1234
- distfn.rvs(*args, size=8)
- s = pickle.dumps(distfn)
- r0 = distfn.rvs(*args, size=8)
- unpickled = pickle.loads(s)
- r1 = unpickled.rvs(*args, size=8)
- npt.assert_equal(r0, r1)
- # also smoke test some methods
- medians = [distfn.ppf(0.5, *args), unpickled.ppf(0.5, *args)]
- npt.assert_equal(medians[0], medians[1])
- npt.assert_equal(distfn.cdf(medians[0], *args),
- unpickled.cdf(medians[1], *args))
- # restore the random_state
- distfn.random_state = rndm
- def check_rvs_broadcast(distfunc, distname, allargs, shape, shape_only, otype):
- np.random.seed(123)
- with suppress_warnings() as sup:
- # frechet_l and frechet_r are deprecated, so all their
- # methods generate DeprecationWarnings.
- sup.filter(category=DeprecationWarning, message=".*frechet_")
- sample = distfunc.rvs(*allargs)
- assert_equal(sample.shape, shape, "%s: rvs failed to broadcast" % distname)
- if not shape_only:
- rvs = np.vectorize(lambda *allargs: distfunc.rvs(*allargs), otypes=otype)
- np.random.seed(123)
- expected = rvs(*allargs)
- assert_allclose(sample, expected, rtol=1e-15)
|