123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- from __future__ import division, print_function, absolute_import
- import numpy as np
- import numpy.ma as ma
- import scipy.stats.mstats as ms
- from numpy.testing import (assert_equal, assert_almost_equal, assert_,
- assert_allclose)
- def test_compare_medians_ms():
- x = np.arange(7)
- y = x + 10
- assert_almost_equal(ms.compare_medians_ms(x, y), 0)
- y2 = np.linspace(0, 1, num=10)
- assert_almost_equal(ms.compare_medians_ms(x, y2), 0.017116406778)
- def test_hdmedian():
- # 1-D array
- x = ma.arange(11)
- assert_allclose(ms.hdmedian(x), 5, rtol=1e-14)
- x.mask = ma.make_mask(x)
- x.mask[:7] = False
- assert_allclose(ms.hdmedian(x), 3, rtol=1e-14)
- # Check that `var` keyword returns a value. TODO: check whether returned
- # value is actually correct.
- assert_(ms.hdmedian(x, var=True).size == 2)
- # 2-D array
- x2 = ma.arange(22).reshape((11, 2))
- assert_allclose(ms.hdmedian(x2, axis=0), [10, 11])
- x2.mask = ma.make_mask(x2)
- x2.mask[:7, :] = False
- assert_allclose(ms.hdmedian(x2, axis=0), [6, 7])
- def test_rsh():
- np.random.seed(132345)
- x = np.random.randn(100)
- res = ms.rsh(x)
- # Just a sanity check that the code runs and output shape is correct.
- # TODO: check that implementation is correct.
- assert_(res.shape == x.shape)
- # Check points keyword
- res = ms.rsh(x, points=[0, 1.])
- assert_(res.size == 2)
- def test_mjci():
- # Tests the Marits-Jarrett estimator
- data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
- 296,299,306,376,428,515,666,1310,2611])
- assert_almost_equal(ms.mjci(data),[55.76819,45.84028,198.87875],5)
- def test_trimmed_mean_ci():
- # Tests the confidence intervals of the trimmed mean.
- data = ma.array([545,555,558,572,575,576,578,580,
- 594,605,635,651,653,661,666])
- assert_almost_equal(ms.trimmed_mean(data,0.2), 596.2, 1)
- assert_equal(np.round(ms.trimmed_mean_ci(data,(0.2,0.2)),1),
- [561.8, 630.6])
- def test_idealfourths():
- # Tests ideal-fourths
- test = np.arange(100)
- assert_almost_equal(np.asarray(ms.idealfourths(test)),
- [24.416667,74.583333],6)
- test_2D = test.repeat(3).reshape(-1,3)
- assert_almost_equal(ms.idealfourths(test_2D, axis=0),
- [[24.416667,24.416667,24.416667],
- [74.583333,74.583333,74.583333]],6)
- assert_almost_equal(ms.idealfourths(test_2D, axis=1),
- test.repeat(2).reshape(-1,2))
- test = [0, 0]
- _result = ms.idealfourths(test)
- assert_(np.isnan(_result).all())
- class TestQuantiles(object):
- data = [0.706560797,0.727229578,0.990399276,0.927065621,0.158953014,
- 0.887764025,0.239407086,0.349638551,0.972791145,0.149789972,
- 0.936947700,0.132359948,0.046041972,0.641675031,0.945530547,
- 0.224218684,0.771450991,0.820257774,0.336458052,0.589113496,
- 0.509736129,0.696838829,0.491323573,0.622767425,0.775189248,
- 0.641461450,0.118455200,0.773029450,0.319280007,0.752229111,
- 0.047841438,0.466295911,0.583850781,0.840581845,0.550086491,
- 0.466470062,0.504765074,0.226855960,0.362641207,0.891620942,
- 0.127898691,0.490094097,0.044882048,0.041441695,0.317976349,
- 0.504135618,0.567353033,0.434617473,0.636243375,0.231803616,
- 0.230154113,0.160011327,0.819464108,0.854706985,0.438809221,
- 0.487427267,0.786907310,0.408367937,0.405534192,0.250444460,
- 0.995309248,0.144389588,0.739947527,0.953543606,0.680051621,
- 0.388382017,0.863530727,0.006514031,0.118007779,0.924024803,
- 0.384236354,0.893687694,0.626534881,0.473051932,0.750134705,
- 0.241843555,0.432947602,0.689538104,0.136934797,0.150206859,
- 0.474335206,0.907775349,0.525869295,0.189184225,0.854284286,
- 0.831089744,0.251637345,0.587038213,0.254475554,0.237781276,
- 0.827928620,0.480283781,0.594514455,0.213641488,0.024194386,
- 0.536668589,0.699497811,0.892804071,0.093835427,0.731107772]
- def test_hdquantiles(self):
- data = self.data
- assert_almost_equal(ms.hdquantiles(data,[0., 1.]),
- [0.006514031, 0.995309248])
- hdq = ms.hdquantiles(data,[0.25, 0.5, 0.75])
- assert_almost_equal(hdq, [0.253210762, 0.512847491, 0.762232442,])
- hdq = ms.hdquantiles_sd(data,[0.25, 0.5, 0.75])
- assert_almost_equal(hdq, [0.03786954, 0.03805389, 0.03800152,], 4)
- data = np.array(data).reshape(10,10)
- hdq = ms.hdquantiles(data,[0.25,0.5,0.75],axis=0)
- assert_almost_equal(hdq[:,0], ms.hdquantiles(data[:,0],[0.25,0.5,0.75]))
- assert_almost_equal(hdq[:,-1], ms.hdquantiles(data[:,-1],[0.25,0.5,0.75]))
- hdq = ms.hdquantiles(data,[0.25,0.5,0.75],axis=0,var=True)
- assert_almost_equal(hdq[...,0],
- ms.hdquantiles(data[:,0],[0.25,0.5,0.75],var=True))
- assert_almost_equal(hdq[...,-1],
- ms.hdquantiles(data[:,-1],[0.25,0.5,0.75], var=True))
- def test_hdquantiles_sd(self):
- # Only test that code runs, implementation not checked for correctness
- res = ms.hdquantiles_sd(self.data)
- assert_(res.size == 3)
- def test_mquantiles_cimj(self):
- # Only test that code runs, implementation not checked for correctness
- ci_lower, ci_upper = ms.mquantiles_cimj(self.data)
- assert_(ci_lower.size == ci_upper.size == 3)
|