123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673 |
- Metadata-Version: 2.0
- Name: voluptuous
- Version: 0.10.5
- Summary: # Voluptuous is a Python data validation library
- Home-page: https://github.com/alecthomas/voluptuous
- Author: Alec Thomas
- Author-email: alec@swapoff.org
- License: BSD
- Download-URL: https://pypi.python.org/pypi/voluptuous
- Platform: any
- Classifier: Development Status :: 5 - Production/Stable
- Classifier: Intended Audience :: Developers
- Classifier: License :: OSI Approved :: BSD License
- Classifier: Operating System :: OS Independent
- Classifier: Programming Language :: Python :: 2
- Classifier: Programming Language :: Python :: 2.7
- Classifier: Programming Language :: Python :: 3
- Classifier: Programming Language :: Python :: 3.1
- Classifier: Programming Language :: Python :: 3.2
- Classifier: Programming Language :: Python :: 3.3
- Classifier: Programming Language :: Python :: 3.4
- # Voluptuous is a Python data validation library
- [](https://travis-ci.org/alecthomas/voluptuous)
- [](https://coveralls.io/github/alecthomas/voluptuous?branch=master) [](https://gitter.im/alecthomas/Lobby)
- Voluptuous, *despite* the name, is a Python data validation library. It
- is primarily intended for validating data coming into Python as JSON,
- YAML, etc.
- It has three goals:
- 1. Simplicity.
- 2. Support for complex data structures.
- 3. Provide useful error messages.
- ## Contact
- Voluptuous now has a mailing list! Send a mail to
- [<voluptuous@librelist.com>](mailto:voluptuous@librelist.com) to subscribe. Instructions
- will follow.
- You can also contact me directly via [email](mailto:alec@swapoff.org) or
- [Twitter](https://twitter.com/alecthomas).
- To file a bug, create a [new issue](https://github.com/alecthomas/voluptuous/issues/new) on GitHub with a short example of how to replicate the issue.
- ## Documentation
- The documentation is provided [here] (http://alecthomas.github.io/voluptuous/).
- ## Changelog
- See [CHANGELOG.md](CHANGELOG.md).
- ## Show me an example
- Twitter's [user search API](https://dev.twitter.com/rest/reference/get/users/search) accepts
- query URLs like:
- ```
- $ curl 'http://api.twitter.com/1.1/users/search.json?q=python&per_page=20&page=1'
- ```
- To validate this we might use a schema like:
- ```pycon
- >>> from voluptuous import Schema
- >>> schema = Schema({
- ... 'q': str,
- ... 'per_page': int,
- ... 'page': int,
- ... })
- ```
- This schema very succinctly and roughly describes the data required by
- the API, and will work fine. But it has a few problems. Firstly, it
- doesn't fully express the constraints of the API. According to the API,
- `per_page` should be restricted to at most 20, defaulting to 5, for
- example. To describe the semantics of the API more accurately, our
- schema will need to be more thoroughly defined:
- ```pycon
- >>> from voluptuous import Required, All, Length, Range
- >>> schema = Schema({
- ... Required('q'): All(str, Length(min=1)),
- ... Required('per_page', default=5): All(int, Range(min=1, max=20)),
- ... 'page': All(int, Range(min=0)),
- ... })
- ```
- This schema fully enforces the interface defined in Twitter's
- documentation, and goes a little further for completeness.
- "q" is required:
- ```pycon
- >>> from voluptuous import MultipleInvalid, Invalid
- >>> try:
- ... schema({})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "required key not provided @ data['q']"
- True
- ```
- ...must be a string:
- ```pycon
- >>> try:
- ... schema({'q': 123})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "expected str for dictionary value @ data['q']"
- True
- ```
- ...and must be at least one character in length:
- ```pycon
- >>> try:
- ... schema({'q': ''})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "length of value must be at least 1 for dictionary value @ data['q']"
- True
- >>> schema({'q': '#topic'}) == {'q': '#topic', 'per_page': 5}
- True
- ```
- "per\_page" is a positive integer no greater than 20:
- ```pycon
- >>> try:
- ... schema({'q': '#topic', 'per_page': 900})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "value must be at most 20 for dictionary value @ data['per_page']"
- True
- >>> try:
- ... schema({'q': '#topic', 'per_page': -10})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "value must be at least 1 for dictionary value @ data['per_page']"
- True
- ```
- "page" is an integer \>= 0:
- ```pycon
- >>> try:
- ... schema({'q': '#topic', 'per_page': 'one'})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc)
- "expected int for dictionary value @ data['per_page']"
- >>> schema({'q': '#topic', 'page': 1}) == {'q': '#topic', 'page': 1, 'per_page': 5}
- True
- ```
- ## Defining schemas
- Schemas are nested data structures consisting of dictionaries, lists,
- scalars and *validators*. Each node in the input schema is pattern
- matched against corresponding nodes in the input data.
- ### Literals
- Literals in the schema are matched using normal equality checks:
- ```pycon
- >>> schema = Schema(1)
- >>> schema(1)
- 1
- >>> schema = Schema('a string')
- >>> schema('a string')
- 'a string'
- ```
- ### Types
- Types in the schema are matched by checking if the corresponding value
- is an instance of the type:
- ```pycon
- >>> schema = Schema(int)
- >>> schema(1)
- 1
- >>> try:
- ... schema('one')
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "expected int"
- True
- ```
- ### URL's
- URL's in the schema are matched by using `urlparse` library.
- ```pycon
- >>> from voluptuous import Url
- >>> schema = Schema(Url())
- >>> schema('http://w3.org')
- 'http://w3.org'
- >>> try:
- ... schema('one')
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "expected a URL"
- True
- ```
- ### Lists
- Lists in the schema are treated as a set of valid values. Each element
- in the schema list is compared to each value in the input data:
- ```pycon
- >>> schema = Schema([1, 'a', 'string'])
- >>> schema([1])
- [1]
- >>> schema([1, 1, 1])
- [1, 1, 1]
- >>> schema(['a', 1, 'string', 1, 'string'])
- ['a', 1, 'string', 1, 'string']
- ```
- However, an empty list (`[]`) is treated as is. If you want to specify a list that can
- contain anything, specify it as `list`:
- ```pycon
- >>> schema = Schema([])
- >>> try:
- ... schema([1])
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "not a valid value"
- True
- >>> schema([])
- []
- >>> schema = Schema(list)
- >>> schema([])
- []
- >>> schema([1, 2])
- [1, 2]
- ```
- ### Validation functions
- Validators are simple callables that raise an `Invalid` exception when
- they encounter invalid data. The criteria for determining validity is
- entirely up to the implementation; it may check that a value is a valid
- username with `pwd.getpwnam()`, it may check that a value is of a
- specific type, and so on.
- The simplest kind of validator is a Python function that raises
- ValueError when its argument is invalid. Conveniently, many builtin
- Python functions have this property. Here's an example of a date
- validator:
- ```pycon
- >>> from datetime import datetime
- >>> def Date(fmt='%Y-%m-%d'):
- ... return lambda v: datetime.strptime(v, fmt)
- ```
- ```pycon
- >>> schema = Schema(Date())
- >>> schema('2013-03-03')
- datetime.datetime(2013, 3, 3, 0, 0)
- >>> try:
- ... schema('2013-03')
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "not a valid value"
- True
- ```
- In addition to simply determining if a value is valid, validators may
- mutate the value into a valid form. An example of this is the
- `Coerce(type)` function, which returns a function that coerces its
- argument to the given type:
- ```python
- def Coerce(type, msg=None):
- """Coerce a value to a type.
- If the type constructor throws a ValueError, the value will be marked as
- Invalid.
- """
- def f(v):
- try:
- return type(v)
- except ValueError:
- raise Invalid(msg or ('expected %s' % type.__name__))
- return f
- ```
- This example also shows a common idiom where an optional human-readable
- message can be provided. This can vastly improve the usefulness of the
- resulting error messages.
- ### Dictionaries
- Each key-value pair in a schema dictionary is validated against each
- key-value pair in the corresponding data dictionary:
- ```pycon
- >>> schema = Schema({1: 'one', 2: 'two'})
- >>> schema({1: 'one'})
- {1: 'one'}
- ```
- #### Extra dictionary keys
- By default any additional keys in the data, not in the schema will
- trigger exceptions:
- ```pycon
- >>> schema = Schema({2: 3})
- >>> try:
- ... schema({1: 2, 2: 3})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "extra keys not allowed @ data[1]"
- True
- ```
- This behaviour can be altered on a per-schema basis. To allow
- additional keys use
- `Schema(..., extra=ALLOW_EXTRA)`:
- ```pycon
- >>> from voluptuous import ALLOW_EXTRA
- >>> schema = Schema({2: 3}, extra=ALLOW_EXTRA)
- >>> schema({1: 2, 2: 3})
- {1: 2, 2: 3}
- ```
- To remove additional keys use
- `Schema(..., extra=REMOVE_EXTRA)`:
- ```pycon
- >>> from voluptuous import REMOVE_EXTRA
- >>> schema = Schema({2: 3}, extra=REMOVE_EXTRA)
- >>> schema({1: 2, 2: 3})
- {2: 3}
- ```
- It can also be overridden per-dictionary by using the catch-all marker
- token `extra` as a key:
- ```pycon
- >>> from voluptuous import Extra
- >>> schema = Schema({1: {Extra: object}})
- >>> schema({1: {'foo': 'bar'}})
- {1: {'foo': 'bar'}}
- ```
- However, an empty dict (`{}`) is treated as is. If you want to specify a list that can
- contain anything, specify it as `dict`:
- ```pycon
- >>> schema = Schema({}, extra=ALLOW_EXTRA) # don't do this
- >>> try:
- ... schema({'extra': 1})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "not a valid value"
- True
- >>> schema({})
- {}
- >>> schema = Schema(dict) # do this instead
- >>> schema({})
- {}
- >>> schema({'extra': 1})
- {'extra': 1}
- ```
- #### Required dictionary keys
- By default, keys in the schema are not required to be in the data:
- ```pycon
- >>> schema = Schema({1: 2, 3: 4})
- >>> schema({3: 4})
- {3: 4}
- ```
- Similarly to how extra\_ keys work, this behaviour can be overridden
- per-schema:
- ```pycon
- >>> schema = Schema({1: 2, 3: 4}, required=True)
- >>> try:
- ... schema({3: 4})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "required key not provided @ data[1]"
- True
- ```
- And per-key, with the marker token `Required(key)`:
- ```pycon
- >>> schema = Schema({Required(1): 2, 3: 4})
- >>> try:
- ... schema({3: 4})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "required key not provided @ data[1]"
- True
- >>> schema({1: 2})
- {1: 2}
- ```
- #### Optional dictionary keys
- If a schema has `required=True`, keys may be individually marked as
- optional using the marker token `Optional(key)`:
- ```pycon
- >>> from voluptuous import Optional
- >>> schema = Schema({1: 2, Optional(3): 4}, required=True)
- >>> try:
- ... schema({})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "required key not provided @ data[1]"
- True
- >>> schema({1: 2})
- {1: 2}
- >>> try:
- ... schema({1: 2, 4: 5})
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "extra keys not allowed @ data[4]"
- True
- ```
- ```pycon
- >>> schema({1: 2, 3: 4})
- {1: 2, 3: 4}
- ```
- ### Recursive schema
- There is no syntax to have a recursive schema. The best way to do it is to have a wrapper like this:
- ```pycon
- >>> from voluptuous import Schema, Any
- >>> def s2(v):
- ... return s1(v)
- ...
- >>> s1 = Schema({"key": Any(s2, "value")})
- >>> s1({"key": {"key": "value"}})
- {'key': {'key': 'value'}}
- ```
- ### Extending an existing Schema
- Often it comes handy to have a base `Schema` that is extended with more
- requirements. In that case you can use `Schema.extend` to create a new
- `Schema`:
- ```pycon
- >>> from voluptuous import Schema
- >>> person = Schema({'name': str})
- >>> person_with_age = person.extend({'age': int})
- >>> sorted(list(person_with_age.schema.keys()))
- ['age', 'name']
- ```
- The original `Schema` remains unchanged.
- ### Objects
- Each key-value pair in a schema dictionary is validated against each
- attribute-value pair in the corresponding object:
- ```pycon
- >>> from voluptuous import Object
- >>> class Structure(object):
- ... def __init__(self, q=None):
- ... self.q = q
- ... def __repr__(self):
- ... return '<Structure(q={0.q!r})>'.format(self)
- ...
- >>> schema = Schema(Object({'q': 'one'}, cls=Structure))
- >>> schema(Structure(q='one'))
- <Structure(q='one')>
- ```
- ### Allow None values
- To allow value to be None as well, use Any:
- ```pycon
- >>> from voluptuous import Any
- >>> schema = Schema(Any(None, int))
- >>> schema(None)
- >>> schema(5)
- 5
- ```
- ## Error reporting
- Validators must throw an `Invalid` exception if invalid data is passed
- to them. All other exceptions are treated as errors in the validator and
- will not be caught.
- Each `Invalid` exception has an associated `path` attribute representing
- the path in the data structure to our currently validating value, as well
- as an `error_message` attribute that contains the message of the original
- exception. This is especially useful when you want to catch `Invalid`
- exceptions and give some feedback to the user, for instance in the context of
- an HTTP API.
- ```pycon
- >>> def validate_email(email):
- ... """Validate email."""
- ... if not "@" in email:
- ... raise Invalid("This email is invalid.")
- ... return email
- >>> schema = Schema({"email": validate_email})
- >>> exc = None
- >>> try:
- ... schema({"email": "whatever"})
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc)
- "This email is invalid. for dictionary value @ data['email']"
- >>> exc.path
- ['email']
- >>> exc.msg
- 'This email is invalid.'
- >>> exc.error_message
- 'This email is invalid.'
- ```
- The `path` attribute is used during error reporting, but also during matching
- to determine whether an error should be reported to the user or if the next
- match should be attempted. This is determined by comparing the depth of the
- path where the check is, to the depth of the path where the error occurred. If
- the error is more than one level deeper, it is reported.
- The upshot of this is that *matching is depth-first and fail-fast*.
- To illustrate this, here is an example schema:
- ```pycon
- >>> schema = Schema([[2, 3], 6])
- ```
- Each value in the top-level list is matched depth-first in-order. Given
- input data of `[[6]]`, the inner list will match the first element of
- the schema, but the literal `6` will not match any of the elements of
- that list. This error will be reported back to the user immediately. No
- backtracking is attempted:
- ```pycon
- >>> try:
- ... schema([[6]])
- ... raise AssertionError('MultipleInvalid not raised')
- ... except MultipleInvalid as e:
- ... exc = e
- >>> str(exc) == "not a valid value @ data[0][0]"
- True
- ```
- If we pass the data `[6]`, the `6` is not a list type and so will not
- recurse into the first element of the schema. Matching will continue on
- to the second element in the schema, and succeed:
- ```pycon
- >>> schema([6])
- [6]
- ```
- ## Running tests.
- Voluptuous is using nosetests:
- $ nosetests
- ## Why use Voluptuous over another validation library?
- **Validators are simple callables**
- : No need to subclass anything, just use a function.
- **Errors are simple exceptions.**
- : A validator can just `raise Invalid(msg)` and expect the user to get
- useful messages.
- **Schemas are basic Python data structures.**
- : Should your data be a dictionary of integer keys to strings?
- `{int: str}` does what you expect. List of integers, floats or
- strings? `[int, float, str]`.
- **Designed from the ground up for validating more than just forms.**
- : Nested data structures are treated in the same way as any other
- type. Need a list of dictionaries? `[{}]`
- **Consistency.**
- : Types in the schema are checked as types. Values are compared as
- values. Callables are called to validate. Simple.
- ## Other libraries and inspirations
- Voluptuous is heavily inspired by
- [Validino](http://code.google.com/p/validino/), and to a lesser extent,
- [jsonvalidator](http://code.google.com/p/jsonvalidator/) and
- [json\_schema](http://blog.sendapatch.se/category/json_schema.html).
- I greatly prefer the light-weight style promoted by these libraries to
- the complexity of libraries like FormEncode.
|